
Slides by Erin Peach and Nick Carney

with mater ia l f rom Vinod Rathnam, Alex Mar iakakis ,
Krysta Yousoufian, Mike Ernst, Kel len Donohue

Section 4:
Graphs and Testing

AGENDA

✕ Graphs

✕ JUnit Testing

✕ Test Script Language

✕ JavaDoc

✕ Code coverage in eclipse (OPTIONAL)

GRAPHS

A B

C D

E

Nodes and

Edges

GRAPHS

A B

C D

E

Children of A

GRAPHS

A B

C D

E

Parents of D

GRAPHS

A B

C D

E

Paths from

A to C:

GRAPHS

A B

C D

E

Paths from

A to C:

A -> C

A -> D -> E -> C

Shortest path

from A to C?

Testing

INTERNAL VS. EXTERNAL
TESTING

✕ Internal : JUnit

+ How you decide to implement the object

+ Checked with implementation tests

✕ External: test script

+ Your API and specifications

+ Testing against the specification

+ Checked with specification tests

A JUNIT TEST CLASS

✕ A method with @Test is flagged as a JUnit test

✕ All @Test methods run when JUnit runs

import org.junit.*;

import static org.junit.Assert.*;

public class TestSuite {

...

@Test

public void TestName1() {

...

}

}

USING JUNIT ASSERTIONS

✕ Verifies that a value matches expectations
✕ assertEquals(42, meaningOfLife());

✕ assertTrue(list.isEmpty());

✕ If the assert fails:

+ Test immediately terminates

+ Other tests in the test class are still run as
normal

+ Results show “details” of failed tests (We’ll get to this later)

USING JUNIT ASSERTIONS

Assertion Case for failure

assertTrue(test) the boolean test is false

assertFalse(test) the boolean test is true

assertEquals(expected, actual) the values are not equal

assertSame(expected, actual) the values are not the same (by ==)

assertNotSame(expected, actual) the values are the same (by ==)

assertNull(value) the given value is not null

assertNotNull(value) the given value is null

• And others: http://www.junit.org/apidocs/org/junit/Assert.html

• Each method can also be passed a string to display if it

fails:
• assertEquals("message", expected, actual)

http://www.junit.org/apidocs/org/junit/Assert.html

CHECKING FOR EXCEPTIONS

✕ Verify that a method throws an exception
when it should:

✕ Passes if specified exception is thrown,
fails otherwise

✕ Only time it’s OK to write a test without a
form of asserts

@Test(expected=IndexOutOfBoundsException.class)

public void testGetEmptyList() {

List<String> list = new ArrayList<String>();

list.get(0);

}

“But don’t I need to create a list
before checking if I’ve successfully
added to it?”

SETUP AND TEARDOWN

✕ Methods to run before/after each test case method is
called:

@Before

public void name() { ... }

@After

public void name() { ... }

✕ Methods to run once before/after the entire test class
runs:

@BeforeClass

public static void name() { ... }

@AfterClass

public static void name() { ... }

SETUP AND TEARDOWN

public class Example {

List empty;

@Before

public void initialize() {

empty = new ArrayList();

}

@Test

public void size() {

...

}

@Test

public void remove() {

...

}

}

Test Writing Etiquette

The Rules
1. Don’t Repeat Yourself
◦ Use constants and helper methods

2. Be Descriptive
◦ Take advantage of message, expected, and actual

values

3. Keep Tests Small
◦ Isolate bugs one at a time – Test halts after failed

assertion

4. Be Thorough
◦ Test big, small, boundaries, exceptions, errors

LET’S PUT IT ALL TOGETHER!

public class DateTest {

...

// Test addDays when it causes a rollover between months

@Test

public void testAddDaysWrapToNextMonth() {

Date actual = new Date(2050, 2, 15);

actual.addDays(14);

Date expected = new Date(2050, 3, 1);

assertEquals("date after +14 days", expected,

actual);

}

How To Create JUnit Test Classes

✕ Right-click hw5.test -> New -> JUnit Test Case

✕ Important: Follow naming guidelines we provide

✕ Demo

JUNIT ASSERTS VS. JAVA ASSERTS

✕ We’ve just been discussing JUnit
assertions so far

✕ Java itself has assertions

public class LitterBox {

ArrayList<Kitten> kittens;

public Kitten getKitten(int n) {

assert(n >= 0);

return kittens(n);

}

}

ASSERTIONS VS. EXCEPTIONS

✕ Assertions should check for things that should
never happen

✕ Exceptions should check for things that might
happen

✕ “Exceptions address the robustness of your
code, while assertions address its correctness”

public class LitterBox {
ArrayList<Kitten> kittens;

public Kitten getKitten(int n) {
assert(n >= 0);
return kittens(n);

}
}

public class LitterBox {
ArrayList<Kitten> kittens;

public Kitten getKitten(int n) {
try {

return kittens(n);
} catch(Exception e) {
}

}
}

REMINDER: ENABLING ASSERTS
IN ECLIPSE

To enable asserts:
Go to Run -> Run Configurations… ->
Arguments tab -> input -ea in VM arguments
section

Do this for every test file

Expensive CheckReps

✕ Ant Validate and Staff Grading will have assertions
enabled

✕ But sometimes a checkRep can be expensive
✕ For example, looking at each node in a Graph with a

large number of nodes

✕ This could cause the grading scripts to timeout

Expensive CheckReps

✕ Before your final commit, remove the checking of expensive parts of
your checkRep or the checking of your checkRep entirely

✕ Example: boolean flag and structure your checkRep as so:

private void checkRep() {

cheap-stuff

if(DEBUG_FLAG) { // or can have this for entire checkRep

expensive-stuff

}

cheap-stuff

...

EXTERNAL TESTS:
TEST SCRIPT LANGUAGE

TEST SCRIPT LANGUAGE

✕ Text file with one command listed per line

✕ First word is always the command name

✕ Remaining words are arguments

✕ Commands will correspond to methods in
your code

TEST SCRIPT LANGUAGE (ex .test
file)

Create a graph

CreateGraph graph1

Add a pair of nodes

AddNode graph1 n1

AddNode graph1 n2

Add an edge

AddEdge graph1 n1 n2 e1

Print the nodes in the graph
and the outgoing edges from n1

ListNodes graph1

ListChildren graph1 n1

n1 n2

How To Create Specification Tests

✕ Create .test and .expected file pairs under hw5.test

✕ Implement parts of HW5TestDriver
+ driver connects commands from .test file to your Graph

implementation to the output which is matched with
.expected file

✕ Run all tests by running SpecificationTests.java
+ Note: staff will have our own .test and .expected pairs to run

with your code
+ Do not hardcode .test/.expected pairs to pass, but instead

make sure the format in hw5 instructions is correctly
followed

DEMO: TEST SCRIPT LANGUAGE

JAVADOC API

✕ Now you can generate the JavaDoc
API for your code

✕ Instructions in the Editing/Compiling
Handout

✕ Demo: Generate JavaDocs

CODE COVERAGE TOOL (OPTIONAL)

Code coverage
✕ One measure of how well you’ve tested

your code
✕ Different kinds:
✕ Statements

✕ Branches

✕ Paths

✕ (see lecture slides on testing for more
detail)

When is coverage knowledge
useful?
✕ What if testInductiveCase were missing

from FibonacciTest.java and
getFibTerm(int n) in Fibonacci.java were
still returning the difference instead of
the sum of previous terms?
✕ All tests pass, but code isn’t correct!

Code Coverage in Eclipse
✕ EclEmma (Ecl like Eclipse) lets you

visualize statement and branch code
coverage
✕ http://www.eclemma.org/installation.html

✕ The next couple slides will go over
installation option 1

http://www.eclemma.org/installation.html

Installation Step 1
✕ From eclipse, go

to the “Help”
menu, and then
choose “Eclipse
Marketplace…”

Installation Step 2
✕ Search for “coverage,”

then when “EclEmma
Java Code Coverage”
shows up, click
“Install”

✕ Then accept the
license agreement, hit
Finish, and restart
Eclipse

Using it
✕ From the top bar,

click the coverage
arrow instead of
the run arrow

✕ Or, right-click on a
.java file and
chose “Coverage
as” instead of
“Run as”
✕ (see next slide for screenshot)

What it looks like
✕ Basic idea:
✕ Highlights lines of code green (covered),

yellow (partially covered—missing some
branch(es)), or red (no coverage)

✕ Also has a view at the bottom with
percent of covered code, and you can
expand folders and/or packages down to
the individual file level

✕ Demo with hw3 Fibonacci.java and
FibonacciTest.java

Questions to help explore the
tool
✕ What happens if you run the coverage

view after you comment out the @Test
before testInductiveCase in
FibonacciTest.java?
✕ What color(s) do the lines of that method

turn?
✕ What color(s) do the lines of the method

getFibTerm(int n) in FibonacciTest.java
turn?

Shown by hovering

the mouse pointer

over the yellow line

So, coverage is…
✕ Good for catching things like
✕ Missing @Test before a test method
✕ Finding branches/statements you’re

forgetting to test
✕ Bad for things like
✕ Making sure you test edge cases
✕ If original FibonacciTest had only tested

n=-1, n=1, and n=3, would have caught difference
instead of sum bug, but might not have caught
the edge/base case issues

✕ Making sure your tests make sense
✕ Good style
✕ Good choice of things to test
✕ Etc.

Final note
✕ This plugin is just a tool
✕ It can’t test for you

✕ It is only one way of visualizing the tests
you’ve written

✕ It can be misleading

✕ It is optional
✕ If it doesn’t make your life easier, don’t

use it

