
CSE 331
Software Design & Implementation

Hal Perkins
Spring 2017

Module Design and General Style Guidelines

UW CSE 331 Spring 2017 1

Style

“Use the active voice.”
“Omit needless words.”

“Don't patch bad code - rewrite it.”
“Make sure your code 'does nothing'

gracefully.”

UW CSE 331 Spring 2017 2

Modules

A module is a relatively general term for a class or a type or any
kind of design unit in software

A modular design focuses on what modules are defined, what their
specifications are, how they relate to each other

–  Not the implementations of the modules
–  Each module respects other modules’ abstraction barriers!

UW CSE 331 Spring 2017 3

Ideals of modular software

Decomposable – can be broken down into modules
to reduce complexity and allow teamwork

Composable – “Having divided to conquer, we must
reunite to rule [M. Jackson].”

Understandable – one module can be examined,
reasoned about, developed, etc. in isolation

Continuity – a small change in the requirements
should affect a small number of modules

Isolation – an error in one module should be as
contained as possible

UW CSE 331 Spring 2017 4

Two general design issues

Cohesion – how well components fit together to form something
that is self-contained, independent, and with a single, well-defined
purpose

Coupling – how much dependency there is between components

Guideline: increase cohesion, decrease coupling

Applies to modules and smaller units

–  Each method should do one thing well
–  Each module should provide a single abstraction

UW CSE 331 Spring 2017 5

Cohesion

The common design objective of separation of concerns suggests
a module should represent a single concept

–  A common kind of “concept” is an ADT

If a module implements more than one abstraction, consider
breaking it into separate modules for each one

UW CSE 331 Spring 2017 6

Coupling
How are modules dependent on one another?

–  Statically (in the code)? Dynamically (at run-time)? More?
–  Ideally, split design into parts that don't interact much

Roughly, the more coupled modules are, the more they need to be
reasoned about as though they are a single, larger module

An	applica)on	

MY	
FINAL	

PROJECT	

A	poor	decomposi)on	
(parts	strongly	coupled)	

MY	

FINAL	 PROJECT	

A	be7er	decomposi)on	
(parts	weakly	coupled)	

MY	

FINECT	 PROJAL	

UW CSE 331 Spring 2017 7

Coupling is the path to the dark side

Coupling leads to complexity

Complexity leads to confusion

Confusion leads to suffering

Once you start down the dark
path, forever will it dominate
your destiny, consume you it will

UW CSE 331 Spring 2017 8

God classes

god class: a class that hoards much of the data or functionality of a
system

–  Poor cohesion – little thought about why all the elements are
placed together

–  Reduces coupling but only by collapsing multiple modules
into one (which replaces dependences between modules
with dependences within a module)

A god class is an example of an anti-pattern: a known bad way of
doing things

UW CSE 331 Spring 2017 9

Cohesion again…

Methods should do one thing well:
–  Compute a value but let client decide what to do with it
–  Observe or mutate, don’t do both
–  Don’t print as a side effect of some other operation

Don’t limit future possible uses of the method by having it do
multiple, not-necessarily-related things

“Flag” variables are often a symptom of poor method cohesion

UW CSE 331 Spring 2017 10

Method design

Effective Java (EJ) Tip #40: Design method signatures carefully
–  Avoid long parameter lists
–  Perlis: “If you have a procedure with ten parameters, you

probably missed some.”
–  Especially error-prone if parameters are all the same type
–  Avoid methods that take lots of Boolean “flag” parameters

Which of these has a bug?

–  memset(ptr, size, 0);
–  memset(ptr, 0, size);

EJ Tip #41: Use overloading judiciously

Can be useful, but avoid overloading with same number of
parameters, and think about whether methods really are related

UW CSE 331 Spring 2017 11

Field design

A variable should be made into a field if and only if:
–  It is part of the inherent internal state of the object
–  It has a value that retains meaning throughout the object's life
–  Its state must persist past the end of any one public method

All other variables can and should be local to the methods in which
they are used

–  Fields should not be used to avoid parameter passing
–  Not every constructor parameter needs to be a field

Exception to the rule: Certain cases where overriding is needed
–  Example: Thread.run

UW CSE 331 Spring 2017 12

Constructor design

Constructors should have all the arguments necessary to initialize the
object's state – no more, no less

Object should be completely initialized after constructor is done

(i.e., the rep invariant should hold)

Client shouldn't need to call other methods to “finish” initialization

UW CSE 331 Spring 2017 13

Good names
EJ Tip #56: Adhere to generally accepted naming conventions
•  Class names: generally nouns

–  Beware "verb + er" names, e.g. Manager, Scheduler,
ShapeDisplayer

•  Interface names often –able/-ible adjectives:
 Iterable, Comparable, …
•  Method names: noun or verb phrases

–  Nouns for observers: size, totalSales
–  Verbs+noun for observers: getX, isX, hasX
–  Verbs for mutators: move, append
–  Verbs+noun for mutators: setX
–  Choose affirmative, positive names over negative ones

isSafe not isUnsafe
isEmpty not hasNoElements
 UW CSE 331 Spring 2017 14

Bad names

count, flag, status, compute, check, value,
pointer, names starting with my…

–  Convey no useful information

Describe what is being counted, what the “flag” indicates, etc.
numberOfStudents, isCourseFull, noMorePizza,
calculatePayroll, validateWebForm, …

But short names in local contexts are good:
Good: for(i = 0; i < size; i++) items[i]=0;
Bad: for(theLoopCounter = 0;
 theLoopCounter < theCollectionSize;
 theLoopCounter++)
 theCollectionItems[theLoopCounter]=0;

UW CSE 331 Spring 2017 15

Class design ideals

Cohesion and coupling, already discussed

Completeness: Every class should present a complete interface

Consistency: In names, param/returns, ordering, and behavior

UW CSE 331 Spring 2017 16

Completeness

Include important methods to make a class easy to use
Counterexamples:

•  A mutable collection with add but no remove
•  A tool object with a setHighlighted method to select

it, but no setUnhighlighted method to deselect it
•  Date class with no date-arithmetic operations

Also:
–  Objects that have a natural ordering should implement
Comparable

–  Objects that might have duplicates should implement
equals (and therefore hashCode)

–  Most objects should implement toString

UW CSE 331 Spring 2017 17

But…

Don’t include everything you can possibly think of
–  If you include it, you’re stuck with it forever (even if almost

nobody ever uses it)
–  Example: does remove make any sense in normal use even

if the collection is mutable and supports add ?

Tricky balancing act: include what’s useful, but don’t make things
overly complicated

–  You can always add it later if you really need it

“Everything should be made as simple
as possible, but not simpler.”

- Einstein

UW CSE 331 Spring 2017 18

Consistency

A class or interface should have consistent names, parameters/
returns, ordering, and behavior

Use similar naming; accept parameters in the same order
Counterexamples:

setFirst(int index, String value)
setLast(String value, int index)

Date/GregorianCalendar use 0-based months

String methods: equalsIgnoreCase,
 compareToIgnoreCase;
 but regionMatches(boolean ignoreCase)

String.length(), array.length, collection.size()

UW CSE 331 Spring 2017 19

Open-Closed Principle

Software entities should be open for extension, but closed for
modification

–  When features are added to your system, do so by adding
new classes or reusing existing ones in new ways

–  If possible, don't make changes by modifying existing ones –
existing code works and changing it can introduce bugs and
errors.

Related: Code to interfaces, not to classes

Example: accept a List parameter, not ArrayList or
LinkedList
EJ Tip #52: Refer to objects by their interfaces

UW CSE 331 Spring 2017 20

Documenting a class

Keep internal and external documentation separate

External: /** ... */ Javadoc for classes, interfaces, methods

–  Describes things that clients need to know about the class
–  Should be specific enough to exclude unacceptable

implementations, but general enough to allow for all correct
implementations

–  Includes all pre/postconditons, etc.

Internal: // comments inside method bodies & classes
–  Describes details of how/why the code is implemented as it is
–  Information that clients wouldn't and shouldn't need, but a

fellow developer working on this class would want – invariants
and internal pre/post conditions especially (including RI & AF)

UW CSE 331 Spring 2017 21

The role of documentation
From Kernighan and Plauger

•  If a program is incorrect, it matters little what the docs say

•  If documentation does not agree with the code, it is not worth
much

•  Consequently, code must largely document itself. If not, rewrite
the code rather than increasing the documentation of the
existing complex code. Good code needs fewer comments than
bad code.

•  Comments should provide additional information from the code
itself. They should not echo the code.

•  Mnemonic variable names and labels, and a layout that
emphasizes logical structure, help make a program “self-
documenting”

UW CSE 331 Spring 2017 22

Enums help document

Consider use of enums, even with only two values – which of the
following is better?

oven.setTemp(97, true);

oven.setTemp(97, Temperature.CELSIUS);

UW CSE 331 Spring 2017 23

Choosing types – some hints

Numbers: Favor int and long for most numeric computations

EJ Tip #48: Avoid float and double if exact answers are
required

Classic example: Money (round-off is bad here)

Strings are often overused since much data is read as text

UW CSE 331 Spring 2017 24

Independence of views

•  Confine user interaction to a core set of “view” classes and
isolate these from the classes that maintain the key system data

•  Do not put print statements in your core classes
–  This locks your code into a text representation
–  Makes it less useful if the client wants a GUI, a web app, etc.

•  Instead, have your core classes return data that can be
displayed by the view classes
–  Which of the following is better?

 public void printMyself()
 public String toString()

UW CSE 331 Spring 2017 25

Last thoughts (for now)
•  Always remember your reader

–  Who are they?
•  Clients of your code
•  Other programmers working with the code

–  (including yourself in 3 weeks/months/years)
–  What do they need to know?

•  How to use it (clients)
•  How it works, but more important, why it was done this

way (implementers)
•  Read/reread style and design advice regularly
•  Keep practicing – mastery takes time and experience
•  You’ll always be learning. Keep looking for better ways to do

things!

UW CSE 331 Spring 2017 26

