
CSE 331
Software Design & Implementation

Hal Perkins
Spring 2017

Lecture 2 – Reasoning About Code With Logic

UW CSE 331 Spring 2017 1

Administrivia

•  Discussion board: be sure to post a reply to the welcome message

•  Next few lectures: two presentations on the web:
–  Lecture notes
–  Powerpoint slides
They are complementary and you should understand both of them

•  HW1 out later today. Programming logic with no loops. Due
Tuesday night, 11 pm.

•  Initial office hours schedule posted, and we’ll start today. We can
adjust if needed – let us know (discussion board would be good)

UW CSE 331 Spring 2017 2

Notetakers needed

•  DRS (disability resources for students) is looking for 2 or more
notetakers to help one of your colleagues who is taking the
class. If you take good notes and would be willing to help,
please see me after class or send a note to the staff mailing list
(cse331-staff@cs) so we can get this set up.* Thanks

*And besides being the right thing to do, DRS will provide a letter of recommendation at the end
of the quarter to document your service.

UW CSE 331 Spring 2017 3

Reasoning about code

Determine what facts are true as a program executes
–  Under what assumptions

Examples:
–  If x starts positive, then y is 0 when the loop finishes
–  Contents of the array that arr refers to are sorted
–  Except at one code point, x + y == z
–  For all instances of Node n,

 n.next == null ∨ n.next.prev == n
–  …

UW CSE 331 Spring 2017 4

Why do this?

•  Essential complement to testing, which we will also study
–  Testing: Actual results for some actual inputs
–  Logical reasoning: Reason about whole classes of inputs/

states at once (“If x > 0, …”)
•  Prove a program correct (or find bugs trying), or (even

better) develop program and proof together to get a
program that is correct by construction

•  Understand why code is correct

•  Stating assumptions is the essence of specification
–  “Callers must not pass null as an argument”
–  “Callee will always return an unaliased object”
–  …

UW CSE 331 Spring 2017 5

Our approach

•  Hoare Logic: a 1970s approach to logical reasoning about code
–  For now, consider just variables, assignments, if-statements,

while-loops
•  So no objects or methods

•  This lecture: The idea, without loops, in 3 passes
1.  High-level intuition of forward and backward reasoning
2.  Precise definition of logical assertions, preconditions, etc.
3.  Definition of weaker/stronger and weakest-precondition

•  Next lecture: Loops

UW CSE 331 Spring 2017 6

Why?

•  Programmers rarely “use Hoare logic” in this much detail
–  For simple snippets of code, it’s overkill
–  Gets very complicated with objects and aliasing
–  But can be very useful to develop and reason about loops and

data with subtle invariants
•  Examples: Homework 0, Homework 2

•  Also it’s an ideal setting for the right logical foundations
–  How can logic “talk about” program states?
–  How does code execution “change what is true”?
–  What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does
happen All the Time in The Real World® (coming lectures)

UW CSE 331 Spring 2017 7

Example

Forward reasoning:
–  Suppose we initially know (or assume) w > 0
 // w > 0
 x = 17;
 // w > 0 ∧ x == 17
 y = 42;
 // w > 0 ∧ x == 17 ∧ y == 42
 z = w + x + y;
 // w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59
 …

–  Then we know various things after, including z > 59

UW CSE 331 Spring 2017 8

Example

Backward reasoning:
–  Suppose we want z to be negative at the end
 // w + 17 + 42 < 0
 x = 17;
 // w + x + 42 < 0
 y = 42;
 // w + x + y < 0
 z = w + x + y;
 // z < 0

–  Then we know initially we need to know/assume w < -59
•  Necessary and sufficient

UW CSE 331 Spring 2017 9

Forward vs. Backward, Part 1

•  Forward reasoning:
–  Determine what follows from initial assumptions
–  Most useful for maintaining an invariant

•  Backward reasoning
–  Determine sufficient conditions for a certain result

•  If result desired, the assumptions suffice for correctness
•  If result undesired, the assumptions suffice to trigger bug

UW CSE 331 Spring 2017 10

Forward vs. Backward, Part 2

•  Forward reasoning:
–  Simulates the code (for many “inputs” “at once”)
–  Often more intuitive
–  But introduces [many] facts irrelevant to a goal

•  Backward reasoning
–  Often more useful: Understand what each part of the code

contributes toward the goal
–  “Thinking backwards” takes practice but gives you a

powerful new way to reason about programs

UW CSE 331 Spring 2017 11

Conditionals

 // initial assumptions
 if(…) {

 … // also know test evaluated to true
 } else {
 … // also know test evaluated to false
 }

 // either branch could have executed

Two key ideas:

1.  The precondition for each branch includes information
about the result of the test-expression

2.  The overall postcondition is the disjunction (“or”) of the
postcondition of the branches

UW CSE 331 Spring 2017 12

Example (Forward)

Assume initially x >= 0

 // x >= 0
 z = 0;
 // x >= 0 ∧ z == 0
 if(x != 0) {
 // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
 z = x;
 // … ∧ z > 0

 } else {
 // x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)

 z = x + 1;
 // … ∧ z == 1

 }
 // (… ∧ z > 0) ∨ (… ∧ z == 1) (so z > 0)

UW CSE 331 Spring 2017 13

Our approach

•  Hoare Logic, a 1970s approach to logical reasoning about code
–  [Named after its inventor, Tony Hoare]
–  Considering just variables, assignments, if-statements,

while-loops
•  So no objects or methods

•  This lecture: The idea, without loops, in 3 passes
1.  High-level intuition of forward and backward reasoning
2.  Precise definition of logical assertions, preconditions, etc.
3.  Definition of weaker/stronger and weakest-precondition

•  Next lecture: Loops

UW CSE 331 Spring 2017 14

Some notation and terminology
•  The “assumption” before some code is the precondition
•  The “what holds after (given assumption)” is the postcondition

•  Instead of writing pre/postconditions after //, write them in {…}
–  This is not Java
–  How Hoare logic has been written “on paper” for 40ish years
 { w < -59 }
 x = 17;
 { w + x < -42 }

–  In pre/postconditions, = is equality, not assignment
•  Math’s “=”, which for numbers is Java’s ==

 { w > 0 ∧ x = 17 }
 y = 42;
 { w > 0 ∧ x = 17 ∧ y = 42 }

UW CSE 331 Spring 2017 15

What an assertion means

•  An assertion (pre/postcondition) is a logical formula that can
refer to program state (e.g., contents of variables)

•  A program state is something that “given” a variable can “tell
you” its contents
–  Or any expression that has no side-effects

•  An assertion holds for a program state, if evaluating using the
program state produces true
–  Evaluating a program variable produces its contents in the

state

–  Can think of an assertion as representing the set of (exactly
the) states for which it holds

UW CSE 331 Spring 2017 16

A Hoare Triple

•  A Hoare triple is two assertions and one piece of code:
{P} S {Q}

–  P the precondition
–  S the code (statement)
–  Q the postcondition

•  A Hoare triple {P} S {Q} is (by definition) valid if:
–  For all states for which P holds, executing S always

produces a state for which Q holds
–  Less formally: If P is true before S, then Q must be true after
–  Else the Hoare triple is invalid

UW CSE 331 Spring 2017 17

Examples

Valid or invalid?
–  (Assume all variables are integers without overflow)

•  {x != 0} y = x*x; {y > 0}
•  {z != 1} y = z*z; {y != z}
•  {x >= 0} y = 2*x; {y > x}
•  {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5}
•  {true} (x = y; z = x;) {y=z}
•  {x=7 ∧ y=5}
 (tmp=x; x=tmp; y=x;)
 {y=7 ∧ x=5}

UW CSE 331 Spring 2017 18

Examples

Valid or invalid?
–  (Assume all variables are integers without overflow)

•  {x != 0} y = x*x; {y > 0} valid
•  {z != 1} y = z*z; {y != z} invalid
•  {x >= 0} y = 2*x; {y > x} invalid
•  {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5} valid
•  {true} (x = y; z = x;) {y=z} valid
•  {x=7 ∧ y=5} invalid
 (tmp=x; x=tmp; y=x;)
 {y=7 ∧ x=5}

UW CSE 331 Spring 2017 19

Aside: assert in Java

•  An assertion in Java is a statement with a Java expression, e.g.,
assert x > 0 && y < x;

•  Similar to our assertions
–  Evaluate using a program state to get true or false
–  Uses Java syntax

•  In Java, this is a run-time thing: Run the code and raise an
exception if assertion is violated
–  Unless assertion-checking is disabled
–  Later course topic

•  This week: we are reasoning about the code, not running it on
some input

UW CSE 331 Spring 2017 20

The general rules

•  So far: Decided if a Hoare triple was valid by using our
understanding of programming constructs

•  Now: For each kind of construct there is a general rule
–  A rule for assignment statements
–  A rule for two statements in sequence
–  A rule for conditionals
–  [next lecture:] A rule for loops
–  …

UW CSE 331 Spring 2017 21

Basic rule: Assignment

{P} x = e; {Q}

•  Let Q’be like Q except replace every x with e
•  Triple is valid if:
 For all program states, if P holds, then Q’ holds

–  That is, P implies Q’, written P => Q’

•  Example: {z > 34} y=z+1; {y > 1}
–  Q’ is {z+1 > 1}

UW CSE 331 Spring 2017 22

Combining rule: Sequence

UW CSE 331 Spring 2017

{P} S1;S2 {Q}

•  Triple is valid if and only if there is an assertion R such that

–  {P}S1{R} is valid, and
–  {R}S2{Q} is valid

•  Example: {z >= 1} y=z+1; w=y*y; {w > y} (integers)
–  Let R be {y > 1}
–  Show {z >= 1} y=z+1; {y > 1}

•  Use rule for assignments: z >= 1 implies z+1 > 1
–  Show {y > 1} w=y*y; {w > y}

•  Use rule for assignments: y > 1 implies y*y > y

23

Combining rule: Conditional

UW CSE 331 Spring 2017

{P} if(b) S1 else S2 {Q}

•  Triple is valid if and only if there are assertions Q1,Q2 such that

–  {P ∧ b}S1{Q1} is valid, and
–  {P ∧ !b}S2{Q2} is valid, and
–  Q1 ∨ Q2 implies Q

•  Example: {true} (if(x > 7) y=x; else y=20;) {y > 5}
–  Let Q1 be {y > 7} (other choices work too)
–  Let Q2 be {y = 20} (other choices work too)
–  Use assignment rule to show {true ∧ x > 7}y=x;{y>7}
–  Use assignment rule to show {true ∧ x <= 7}y=20;{y=20}
–  Indicate y>7 ∨ y=20 implies y>5

24

Our approach

•  Hoare Logic, a 1970s approach to logical reasoning about code
–  Considering just variables, assignments, if-statements,

while-loops
•  So no objects or methods

•  This lecture: The idea, without loops, in 3 passes
1.  High-level intuition of forward and backward reasoning
2.  Precise definition of logical assertions, preconditions, etc.
3.  Definition of weaker/stronger and weakest-precondition

•  Next lecture: Loops

UW CSE 331 Spring 2017 25

Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:
–  P1 is stronger than P2
–  P2 is weaker than P1

•  Whenever P1 holds, P2 also holds
•  So it is more (or at least as) “difficult” to satisfy P1

–  The program states where P1 holds are a subset of the
program states where P2 holds

•  So P1 puts more constraints on program states
•  So it’s a stronger set of obligations/requirements

UW CSE 331 Spring 2017

P1 P2

26

Examples

•  x = 17 is stronger than x > 0

•  x is prime is neither stronger nor weaker than x is odd

•  x is prime and x > 2 is stronger than
x is odd and x > 2

•  …

UW CSE 331 Spring 2017 27

Why this matters to us

•  Suppose:
–  {P}S{Q}, and
–  P is weaker than some P1, and
–  Q is stronger than some Q1

•  Then: {P1}S{Q} and {P}S{Q1} and {P1}S{Q1}

•  Example:
–  P is x >= 0
–  P1 is x > 0
–  S is y = x+1
–  Q is y > 0
–  Q1 is y >= 0

UW CSE 331 Spring 2017 28

So…

•  For backward reasoning, if we want {P}S{Q}, we could instead:
–  Show {P1}S{Q}, and
–  Show P => P1

•  Better, we could just show {P2}S{Q} where P2 is the weakest
precondition of Q for S
–  Weakest means the most lenient assumptions such that Q

will hold after executing S
–  Any precondition P such that {P}S{Q} is valid will be

stronger than P2, i.e., P => P2

•  Amazing (?): Without loops/methods, for any S and Q, there
exists a unique weakest precondition, written wp(S,Q)
–  Like our general rules with backward reasoning

UW CSE 331 Spring 2017 29

Weakest preconditions

•  wp(x = e;, Q) is Q with each x replaced by e
–  Example: wp(x = y*y;, x > 4) = y*y > 4, i.e., |y| > 2

•  wp(S1;S2, Q) is wp(S1,wp(S2,Q))
–  i.e., let R be wp(S2,Q) and overall wp is wp(S1,R)
–  Example: wp((y=x+1; z=y+1;), z > 2) =

 (x + 1)+1 > 2, i.e., x > 0

•  wp(if b S1 else S2, Q) is this logic formula:
(b ∧ wp(S1,Q)) ∨ (!b ∧ wp(S2,Q))

–  (In any state, b will evaluate to either true or false…)
–  (You can sometimes then simplify the result)

UW CSE 331 Spring 2017 30

Simple examples

•  If S is x = y*y and Q is x > 4,
 then wp(S,Q) is y*y > 4, i.e., |y| > 2

•  If S is y = x + 1; z = y – 3; and Q is z = 10,
 then wp(S,Q) …
 = wp(y = x + 1; z = y – 3;, z = 10)
 = wp(y = x + 1;, wp(z = y – 3;, z = 10))
 = wp(y = x + 1;, y-3 = 10)
 = wp(y = x + 1;, y = 13)
 = x+1 = 13
 = x = 12

UW CSE 331 Spring 2017 31

Bigger example

UW CSE 331 Spring 2017

-4 -3 -2 -1 0 7 2 1 4 6 5 3 8 9

S is if (x < 5) {
 x = x*x;
 } else {
 x = x+1;
 }
Q is x >= 9

wp(S, x >= 9)
= (x < 5 ∧ wp(x = x*x;, x >= 9))
 ∨ (x >= 5 ∧ wp(x = x+1;, x >= 9))
= (x < 5 ∧ x*x >= 9)
 ∨ (x >= 5 ∧ x+1 >= 9)
= (x <= -3) ∨ (x >= 3 ∧ x < 5)
 ∨ (x >= 8)

32

If-statements review

UW CSE 331 Spring 2017

Forward reasoning

{P}
if B
 {P ∧ B}
 S1
 {Q1}
else
 {P ∧ !B}
 S2
 {Q2}
{Q1 ∨ Q2}

Backward reasoning

{ (B ∧ wp(S1, Q))
 ∨ (!B ∧ wp(S2, Q)) }
if B
 {wp(S1, Q)}
 S1
 {Q}
else
 {wp(S2, Q)}
 S2
 {Q}
{Q}

33

“Correct”

•  If wp(S,Q) is true, then executing S will always produce a state
where Q holds
–  true holds for every program state

UW CSE 331 Spring 2017 34

One more issue

•  With forward reasoning, there is a problem with assignment:
–  Changing a variable can affect other assumptions

•  Example:
 {true}
 w=x+y;
 {w = x + y;}
 x=4;
 {w = x + y ∧ x = 4}
 y=3;
 {w = x + y ∧ x = 4 ∧ y = 3}
 But clearly we do not know w=7!

 UW CSE 331 Spring 2017 35

The fix

•  When you assign to a variable, you need to replace all other
uses of the variable in the post-condition with a different variable
–  So you refer to the “old contents”

•  Corrected example:
 {true}
 w=x+y;
 {w = x + y;}
 x=4;
 {w = x1 + y ∧ x = 4}
 y=3;
 {w = x1 + y1 ∧ x = 4 ∧ y = 3}

UW CSE 331 Spring 2017 36

Useful example: swap

•  Swap contents
–  Give a name to initial contents so we can refer to them in the

post-condition
–  Just in the formulas: these “names” are not in the program
–  Use these extra variables to avoid “forgetting” “connections”

 {x = x_pre ∧ y = y_pre}
 tmp = x;
 {x = x_pre ∧ y = y_pre ∧ tmp=x}
 x = y;
 {x = y ∧ y = y_pre ∧ tmp=x_pre}
 y = tmp;
 {x = y_pre ∧ y = tmp ∧ tmp=x_pre}

UW CSE 331 Spring 2017 37

