A physicist, an engineer and a programmer were in a
car driving over a steep alpine pass when the brakes
failed. The car was getting faster and faster, they
were struggling to get round the corners and once or
twice only the feeble crash barrier saved them from
crashing down the side of the mountain. They were
sure they were all going to die, when suddenly they
spotted an escape lane. They pulled into the escape
lane and came safely to a halt.



The physicist said "We need to model the friction in the
brake pads and the resultant temperature rise, see if we
can work out why they failed".

The engineer said "l think I've got a few wrenches in the
back. I'll take a look and see if | can work out what's wrong".

The programmer said "Why don't we try again and see if it's
reproducible?"



Section 8:
Model-View-Controller

Slides adapted from Alex Mariakakis

with material from Krysta Yousoufian, Kellen
Donohue, and James Fogarty



MIDTERM REFLECTION - PROBLEM 2

Is this implementation correct given the invariant?
{{ P: 0 < n <= str.length, chars.length, lens.length }}

int runlLengthEncode (String str, int n, char[] chars, int[] lens) {
int féeaguntd = 07
int index = 0;
igd fif £/ 71
char prev = “\0';

{{ Inv: P and str[0..i-1]=chars[0]*lens[0]+..+chars[j]*lens[]j] and
chars[0] !=chars[1], .., chars[j-1]'=chars[j] and (i = 0 or cur = str[i-1]) }}
while (1 < n) {

i;
if (str.charAt(i) != prev && prev != ‘\0’) {
lens[index] = count; NO! The code does not follow
count = 0; the loop invariant! This
g makes it impossible for other
} | programmers to understand
prev = str.charAt (1) ! !
ISR TENSAY what your loop is doing
& EFE8S 0 H i because the loop invariant
count++; details how the code
S MRS N ) fehd[iddeaf 5 Edubte: functions one way, but the
; implementation works

completely differently.



MIDTERM REFLECTION - PROBLEM 2

{{ P: 0 < n <= str.length, chars.length, lens.length }}
int runlLengthEncode (String str, int n, char[] chars, int[] lens) {
it fif A 10
nnts fif & OF
int cur = ‘\0’;
{{ Inv: P and str[0..i-1]=chars[0]*lens[0]+..+chars[j]*1lens[]j] and
chars[0] '=chars[1], .., chars[j-1]'!'=chars[j] and (i = 0 or cur = str[i-1]) }}

while (1 != n) {
LH T Eh i 98 1 TT 139 ] Much better! To note some
R Y T 15 P 1Y key differences here, the
} else { . 44!
L] variables declared initially
SH L L L) I|n.ef up \{Vlth the varllable.s
i idEi H L4 utilized in the loop invariant.
lens[j] = 1; Furthermore, when the
} variables are incremented, it
i =1+ 1; corresponds and supports
} the ranges for what is
} asserted as true in the

invariant for each iteration of
the loop.



MVC

The classic design pattern
Used for data-driven user applications
Such apps juggle several tasks:

Loading and storing the data - getting it in/out of storage on request
Constructing the user interface - what the user sees
Interpreting user actions - deciding whether to modify the Ul or data

These tasks are largely independent of each other
(in theory)

Model, view, and controller each get one task

Typically view and controller tend to be more
coupled together while model is standalone



MODEL

talks to data source
to retrieve and store
data

Which database table is
the requested data stored
in?

What SQL query will get
me the data
| need?



VIEW

asks model for data
and presents itin a
user-friendly format

Would this text look better
blue or red? In the bottom
corner
or front and center?

Should these items go in a
dropdown list or radio
buttons?



listens for the user to
change data or state
in the Ul, notifying the
model or view
accordingly

The user just clicked the
“hide details” button. |
better tell the view.

The user just changed the
event details. | better let the
model know to update the
data.



BENEFITS OF MVC

Organization of code
Maintainable, easy to find what you need

Ease of development
Build and test components independently
Flexibility

Swap out views for different presentations of the same data (ex: calendar daily,
weekly, or monthly view)

Swap out models to change data storage without affecting user

Modularity

Can test model independently and know any future bugs due to view or
controller

View typically difficult to test - cannot simply write unit tests and must
trial features manually



MVC FLOW IN THEORY

View

Model

Controller



MVC FLOW

In theory...

Pattern of behavior in response to inputs (controller) are independent of visual
geometry (view)

Controller contacts view to interpret what input events should mean in the context of
the view

In practice...

View and controller are so intertwined that they almost always
occur in matched pairs (ex: command line interface)

Many architectures combine the two

Other architecture names similar to MVC include: Model-view-
adapter, Model-view-presenter, Model-view-viewmodel

Notice how the model and view are always distinguished - no one
knows how to completely decouple controller!



MVC FLOW IN PRACTICE

View
Model
Controller



PUSH VS, PULL

Model

View

Controller




PUSH VS, PULL ARCHITECTURE

Push architecture

As soon as the model changes, it notifies all of the
views

Pull architecture

When a view needs to be updated, it asks the
model for new data



PUSH VS, PULL ARCHITECTURE

Advantages for push

Guaranteed to have latest data in case something
goes wrong later on

Advantages for pull

Avoid unnecessary updates, not nearly as intensive
on the view



MVC EXAMPLE - TRAFFIC SIGNAL




TRAFFIC SIGNAL - MVC

Detect cars waiting to enter intersection
Traffic lights to direct car traffic
Regulate valid traffic movements
Manual override for particular lights
Detect pedestrians waiting to cross
Pedestrian signals to direct pedestrians

External timer which triggers changes
at set interval



TRAFFIC SIGNAL - MVC

Detect cars waiting to enter intersection

Traffic lights to direct car traffic

Regulate valid traffic movements X
Manual override for particular lights

Detect pedestrians waiting to cross

Pedestrian signals to direct pedestrians

External timer which triggers changes
at set interval



TRAFFIC SIGNAL

Model
Stores current state of traffic flow

Knows current direction of traffic
Capable of skipping a light cycle

Stores whether there are cars and/or pedestrians waiting

View
Conveys information to cars and pedestrians in a specific
direction

Controller
Aware of model’s current direction
Triggers methods to notify model that state should change



TRAFFIC SIGNAL CODE

Model
TrafficModel - keeps track of which lights should be on and off

View
CarLight - shows relevant state of TrafficModel to cars
PedestrianLight - shows relevant state of TrafficModel to
pedestrians

Controller
PedestrianButton - notifies TrafficModel that there is a pedestrian

waiting

CarDetector - notifies TrafficModel that there is a car waiting
LightSwitch - enables or disables the light

Timer - regulates time in some way, possibly to skip cycles



Apply your generic graph & Dijkstra’s to
campus map data

Given a list of buildings and walking paths

Produce routes from one building to another on
the walking paths



HWS8 DATA FORMAT

List of buildings (abbreviation, name, loc in pixels)

BAG Bagley Hall (East Entrance) 1914.5103,1708.8816
BGR By George 1671.5499,1258.4333

List of paths (endpoint 1, endpoint 2, dist in feet)

1908 V20151962 4822

1906.1864,1939.0633: 26.583482327919597

1897.9472,1960.0194: 20.597253035175832

1915.7143,1956.5: 26.68364745009741
2337.0143,806.8278

2346.3446,817.55768: 29.685363221542797

2321.6193,788.16714: 49.5110360968527

2316.4876,813.59229: 44.65826043418031

(0,0) is In the upper left



MVC IN HWS

Model stores graph, performs Dijkstra’s
View shows results to users in text format

Controller takes user commands and uses view to show
results

View and Controller will change in HW9, but Model will
stay the same

Yet another example of how the Model is portable to
different interfaces, but the view and controller are coupled
cannot be transferred to different Ul



MVC IN ANDROID HW9

View - Android device application screen
(including campus map image, display of
button, and list of building abbreviations)

Controller - Pressing button makes text
appear on screen “BAG”

Model - List populated with building
abbreviations draws on buildings stored
in campus graph

Notice how tightly coupled the controller
and view are here, but our same campus
model is easily incorporated!

Android Emulator - Nexus_SX_API 26 _x86:5554

/

& 9% 01204
CSE331-17su Campus Paths

BAG (NE)

BGR

o




