Section 7:

Dijkstra's Algorithm and Generics

BRYAN VAN DRAANEN

SLIDES ADAPTED FROM ALEX MARIAKAKIS

WITH MATERIAL KELLEN DONOHUE, DAVID MAILHOT, AND DAN GROSSMAN

Java String Pair Class

public class Pair \{

private String key; private String value;
public Pair(String key, String value) \{ this.key = key; this.value = value;
\}
public String getKey() \{ return this.key;
\}

Java Generic Pair Class

```
public class Pair<K, V> {
    private K key;
    private V value;
    public Pair(K key, V value) {
    this.key = key;
    this.value = value;
}
public K getKey() {
        return this.key;
}
}
```


Java Generic Pair Class (Comparable Generic Types)

```
public class Pair<K extends Comparable<K>,
                                    V extends Comparable<V>> {
private K key;
private V value;
public Pair(K key, V value) {
    this.key = key;
    this.value = value;
}
public K getKey() {
    return this.key;
}
```

\}

Java Generic Pair Class (Comparable Generic Types and Comparable Generic Pair)

```
public class Pair<K extends Comparable<K>,
                        V extends Comparable<V>>
                        implements Comparable<Pair<K,V>>{
private K key;
private V value;
public Pair(K key, V value) {
    this.key = key;
    this.value = value;
}
public int compareTo(Pair<K, V> other) {
    int r = key.compareTo(other.key);
    return r != 0 ? r : value.compareTo(other.value);
```

\}

Using Generic Java Pair

```
Pair<String, String> pair = new Pair<String,String>("hey","listen!");
```

String key = pair.getKey();
Pair<Integer, Integer> intPair = new Pair<Integer, Integer>(1, 2);
Integer key2 = intPair.getKey();
List<Pair<String,String>> lst = new ArrayList<Pair<String,String>>();
lst.add(pair); // Add your generic pair to a generic collection!

Review: Shortest Paths with BFS

Review: Shortest Paths with BFS

Shortest Paths with Weights

Shortest Paths with Weights

> Goal: Smallest cost? Or fewest edges?

BFS vs. Dijkstra's

BFS doesn't work because path with minimal cost \neq path with fewest edges
Note: Dijkstra's only works if the weights are non-negative
What happens if there is a negative edge?

- Minimize cost by repeating the cycle forever

Dijkstra's Algorithm

Named after its inventor Edsger Dijkstra (1930-2002)

- Truly one of the "founders" of computer science;
- This is just one of his many contributions

The idea: reminiscent of BFS, but adapted to handle weights

- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A PRIORITY QUEUE will turn out to be useful for efficiency - We'll cover this later in the slide deck

Dijkstra's Algorithm

1. For each node v , set v .cost $=\infty$ and v . known $=$ false
2. Set source.cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v, u) with weight w ,
```
c1 = v.cost + w
    c2 = u.cost // cost of best path through v to u
    if(c1 < c2) // cost of best path to u previously known
    u.cost = c1
    u.path = v
    // if the new path through v is better, update
```


Example \#1

Interpreting the Results

Example \#2

Order Added to Known Set:

vertex	known?	cost	path
A	Y	0	
B		∞	
C		∞	
D		∞	
E		∞	
F		∞	
G		∞	

Example \#2

Order Added to Known Set:
A, D, C, E, B, F, G

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

Pseudocode Attempt \#1

dijkstra(Graph G, Node start) \{
for each node: x.cost=infinity, x.known=false start.cost = 0
while (not all nodes are known) \{
b = dequeue
b.known = true
for each edge (b,a) in G \{
if(!a.known) \{
if(b.cost + weight((b,a)) < a.cost)\{
a.cost $=$ b.cost + weight((b,a))
a.path = b
\}
\}

Can We Do Better?

Increase efficiency by considering lowest cost unknown vertex with sorting instead of looking at all vertices

PriorityQueue is like a queue, but returns elements by lowest value instead of FIFO

Priority Queue

Increase efficiency by considering lowest cost unknown vertex with sorting instead of looking at all vertices

PriorityQueue is like a queue, but returns elements by lowest value instead of FIFO

Two ways to implement:

1. Comparable
a) class Node implements Comparable<Node>
b) public int compareTo(other)
2. Comparator
a) class NodeComparator extends Comparator<Node>
b) new PriorityQueue(new NodeComparator())

Priority Queue Example

Priority Queue q compared by path weights (lower weights higher priority)
Suppose $q=[2,4,5]$
q.add(3); - path with weight 3
q.add(8); - path with weight 8

$$
q=[2,3,4,5,8]
$$

x = q.remove();

$$
\begin{aligned}
& q=[3,4,5,8] \\
& x=2
\end{aligned}
$$

Pseudocode with PriorityQueue

```
start = starting node
dest = destination node
active = priority queue -(each element is a path from start to a given node -
    Priority based on total cost of individual path)
finished = set of nodes - where least-cost path is known
add a path from start to itself to active
```

while active is non-empty:
minPath $=$ active.remove()
minDest $=$ destination node in minPath
if minDest is dest:
return minPath
if minDest is in finished:
continue
add minDest to finished
for each edge $e=$ <minDest, child>:
if child is not in finished:
newPath $=$ minPath $+e$
add newPath to active

Homework 7

Modify your graph to use generics

- Will have to update HW \#5 and HW \#6 tests

Implement Dijkstra's algorithm

- Search algorithm that accounts for edge weights
- Note: This should not change your implementation of Graph. Dijkstra's is performed on a Graph, not within a Graph.

Homework 7

The more well-connected two characters are, the lower the weight and the more likely that a path is taken through them

- The weight of an edge is equal to the inverse of how many comic books the two characters share
- Ex: If Amazing Amoeba and Zany Zebra appeared in 5 comic books together, the weight of their edge would be $1 / 5$

Hw7 Important Notes!!!

DO NOT access data from hw6/src/data

- Copy over data files from hw6/src/data into hw7/src/data, and access data in hw7 from there instead
- Remember to do this! Or tests will fail when grading.

DO NOT modify ScriptFileTests.java

Hw7 Test script Command Notes

HW7 LoadGraph command is slightly different from HW6

- After graph is loaded, there should be at most one directed edge from one node to another, with the edge label being the multiplicative inverse of the number of books shared
- Example: If 8 books are shared between two nodes, the edge label will be 1/8
- Since the edge relationship is symmetric, there would be another edge going the other direction with the same edge label

Graph Activity

List the "Characters set, the Books->Characters map, and draw the graph using these characters and "books".

Harry HP1
Harry HP2
Harry HP3
Harry HP4
Quirrel HP1
Scabbers HP1
Scabbers HP2
Voldemort HP4
Voldemort SharedAHead
Quirrel SharedAHead

Graph Activity Answers

Characters
Harry, Quirrel, Scabbers
Books -> Characters
HP1 -> Harry, Quirrel, Scabbers
HP2 -> Harry, Scabbers,
HP3 -> Harry
HP4 -> Harry, Voldemort
SharedAHead -> Voldemort, Quirrel

Graph Activity Answers

