
BRYAN VAN DRAANEN

SLIDES ADAPTED FROM ALEX MARIAKAKIS

WITH MATERIAL KELLEN DONOHUE, DAVID
MAILHOT, AND DAN GROSSMAN

Section 7:
Dijkstra’s Algorithm and

Generics

Java String Pair Class
public class Pair {

private String key;

private String value;

public Pair(String key, String value) {

this.key = key;

this.value = value;

}

public String getKey() {

return this.key;

}

}

Java Generic Pair Class
public class Pair<K, V> {

private K key;

private V value;

public Pair(K key, V value) {

this.key = key;

this.value = value;

}

public K getKey() {

return this.key;

}

}

Java Generic Pair Class
(Comparable Generic Types)

public class Pair<K extends Comparable<K>,

V extends Comparable<V>> {

private K key;

private V value;

public Pair(K key, V value) {

this.key = key;

this.value = value;

}

public K getKey() {

return this.key;

}

}

Java Generic Pair Class
(Comparable Generic Types and
Comparable Generic Pair)

public class Pair<K extends Comparable<K>,

V extends Comparable<V>>

implements Comparable<Pair<K,V>>{

private K key;

private V value;

public Pair(K key, V value) {

this.key = key;

this.value = value;

}

public int compareTo(Pair<K, V> other) {

int r = key.compareTo(other.key);

return r != 0 ? r : value.compareTo(other.value);

}

}

Using Generic Java Pair
Pair<String, String> pair = new Pair<String,String>(“hey”,“listen!”);

String key = pair.getKey();

Pair<Integer, Integer> intPair = new Pair<Integer, Integer>(1, 2);

Integer key2 = intPair.getKey();

List<Pair<String,String>> lst = new ArrayList<Pair<String,String>>();

lst.add(pair); // Add your generic pair to a generic collection!

Review: Shortest Paths with BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D <B,D> 1

E <B,D,E> 2

From Node B

A

B

C D

E

1

1

1

11

1

1

Review: Shortest Paths with BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D <B,D> 1

E <B,D,E> 2

From Node B

A

B

C D

E

1

1

1

11

1

1

Shortest Paths with Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D <B,A,C,D> 7

E <B,A,C,E> 7

From Node B
2

100

2

62

3

100

Paths are not the same!

Shortest Paths with Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D <B,A,C,D> 7

E <B,A,C,E> 7

From Node B
2

100

2

62

3

100

Paths are not the same!

Goal: Smallest
cost? Or fewest
edges?

BFS vs. Dijkstra’s

BFS doesn’t work because path with minimal cost ≠ path with fewest edges

Note: Dijkstra’s only works if the weights are non-negative

What happens if there is a negative edge?
◦ Minimize cost by repeating the cycle forever

500

100
100 100

100
5

-10

1
1

Dijkstra’s Algorithm
Named after its inventor Edsger Dijkstra (1930-2002)

◦ Truly one of the “founders” of computer science;

◦ This is just one of his many contributions

The idea: reminiscent of BFS, but adapted to handle weights
◦ Grow the set of nodes whose shortest distance has been computed

◦ Nodes not in the set will have a “best distance so far”

◦ A PRIORITY QUEUE will turn out to be useful for efficiency – We’ll cover this
later in the slide deck

Dijkstra’s Algorithm
1. For each node v, set v.cost = ∞ and v.known = false

2. Set source.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost

b) Mark v as known

c) For each edge (v,u) with weight w,
c1 = v.cost + w

c2 = u.cost

if(c1 < c2)

u.cost = c1

u.path = v

// cost of best path through v to u

// cost of best path to u previously known

// if the new path through v is better, update

A B

D
C

F H

E

G

0 2 2 3

110 2
3

111

7

1

9

2

4 5

Order Added to Known Set:

Example #1

vertex known? cost path

A Y 0

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

H ∞

Goal: Fully explore

the graph

A B

D
C

F H

E

G

0 2

4

1

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B ≤ 2 A

C ≤ 1 A

D ≤ 4 A

E ∞

F ∞

G ∞

H ∞

A B

D
C

F H

E

G

0 2

4

1

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B ≤ 2 A

C Y 1 A

D ≤ 4 A

E ∞

F ∞

G ∞

H ∞

A B

D
C

F H

E

G

0 2

4

1

12

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B ≤ 2 A

C Y 1 A

D ≤ 4 A

E ≤ 12 C

F ∞

G ∞

H ∞

A B

D
C

F H

E

G

0 2

4

1

12

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C, B

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D ≤ 4 A

E ≤ 12 C

F ∞

G ∞

H ∞

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C, B

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D ≤ 4 A

E ≤ 12 C

F ≤ 4 B

G ∞

H ∞

A B

D
C

F H

E

G

0 2 4

4

1

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C, B, D

12

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F ≤ 4 B

G ∞

H ∞

A B

D
C

F H

E

G

0 2 4

4

1

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C, B, D, F

12

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G ∞

H ∞

A B

D
C

F H

E

G

0 2 4 7

4

1

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C, B, D, F

12

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G ∞

H ≤ 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C, B, D, F, H

12

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G ∞

H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1
8

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C, B, D, F, H

12

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G ≤ 8 H

H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1
8

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C, B, D, F, H, G

12

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1
8

2 2

12
3

7

9

2

4 5

Order Added to Known Set:

A, C, B, D, F, H, G

11

3

10

111

1

Example #1

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2

12
3

7

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E

3

10

111

1

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2

3

1
11

7

1
9

2

4 5

Interpreting the Results
vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F
A B

D
C

F H

E

G

2 2 3

1

3

1
4

A B

C
D

F

E

G

0 2

1
2 5

1

1

1

2
6

5 3

10

Order Added to Known Set:

Example #2

vertex known? cost path

A Y 0

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2 5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E, B, F, G

Example #2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

while(not all nodes are known) {

b = dequeue

b.known = true

for each edge (b,a) in G {

if(!a.known) {

if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))

a.path = b

}

}

…

Pseudocode Attempt #1

Can We Do Better?
Increase efficiency by considering lowest cost unknown vertex with
sorting instead of looking at all vertices

PriorityQueue is like a queue, but returns elements by lowest value
instead of FIFO

Priority Queue
Increase efficiency by considering lowest cost unknown
vertex with sorting instead of looking at all vertices

PriorityQueue is like a queue, but returns elements by
lowest value instead of FIFO

Two ways to implement:
1. Comparable

a) class Node implements Comparable<Node>

b) public int compareTo(other)

2. Comparator
a) class NodeComparator extends Comparator<Node>

b) new PriorityQueue(new NodeComparator())

Priority Queue Example
Priority Queue q compared by path weights (lower weights higher priority)

Suppose q = [2, 4, 5]

q.add(3); - path with weight 3

q.add(8); - path with weight 8

q = [2, 3, 4, 5, 8]

x = q.remove();

q = [3, 4, 5, 8]

x = 2

start = starting node

dest = destination node

active = priority queue -(each element is a path from start to a given node –

Priority based on total cost of individual path)

finished = set of nodes - where least-cost path is known

add a path from start to itself to active

while active is non-empty:

minPath = active.remove()

minDest = destination node in minPath

if minDest is dest:

return minPath

if minDest is in finished:

continue

add minDest to finished

for each edge e = <minDest, child>:

if child is not in finished:

newPath = minPath + e

add newPath to active

Pseudocode with PriorityQueue

Homework 7
Modify your graph to use generics

◦ Will have to update HW #5 and HW #6 tests

Implement Dijkstra’s algorithm
◦ Search algorithm that accounts for edge weights

◦ Note: This should not change your implementation of Graph. Dijkstra’s is
performed on a Graph, not within a Graph.

Homework 7
The more well-connected two characters are, the lower the weight and
the more likely that a path is taken through them

◦ The weight of an edge is equal to the inverse of how many comic books the
two characters share

◦ Ex: If Amazing Amoeba and Zany Zebra appeared in 5 comic books together,
the weight of their edge would be 1/5

Hw7 Important Notes!!!
DO NOT access data from hw6/src/data

◦ Copy over data files from hw6/src/data into hw7/src/data, and access data in
hw7 from there instead

◦ Remember to do this! Or tests will fail when grading.

DO NOT modify ScriptFileTests.java

Hw7 Test script Command
Notes
HW7 LoadGraph command is slightly different from HW6

◦ After graph is loaded, there should be at most one directed edge from one
node to another, with the edge label being the multiplicative inverse of the
number of books shared

◦ Example: If 8 books are shared between two nodes, the edge label will be
1/8

◦ Since the edge relationship is symmetric, there would be another edge going
the other direction with the same edge label

Graph Activity
List the Characters set, the Books->Characters map, and draw the graph using these characters and
“books”.

Harry HP1

Harry HP2

Harry HP3

Harry HP4

Quirrel HP1

Scabbers HP1

Scabbers HP2

Voldemort HP4

Voldemort SharedAHead

Quirrel SharedAHead

Graph Activity Answers
Characters

Harry, Quirrel, Scabbers

Books -> Characters

HP1 -> Harry, Quirrel, Scabbers

HP2 -> Harry, Scabbers,

HP3 -> Harry

HP4 -> Harry, Voldemort

SharedAHead -> Voldemort, Quirrel

Graph Activity Answers
Vol

Har
Qui

Sca

1
1

1

1/2
1

