
CSE 331 SECTION 6: MIDTERM REVIEW
Reasoning about Code

1. Using backwards reasoning, find the weakest precondition for each sequence of statements and
postcondition below. Insert appropriate assertions in each blank line. You should simplify your answers if
possible.
A.
 {{ __ }}

 z = x + y;

 {{ __ }}

 y = z – 3;

 {{ x > y }}

B.
 {{ __ }}

 p = a + b;

 {{ __ }}

 q = a - b;

 {{ p + q = 42 }}

2. Given two strings a and b where a.length > 0 and b.length > 0 that are only comprised of alphabetic
characters a-z, fill in the implementations for the method arePermutations which returns true if a and b
are permutations of each other and false otherwise. You do not need to turn in a complete proof of
correctness, but you should complete one to ensure your code is correct.

Implementation 1:
public boolean arePermutations(String a, String b) {

 {inv: sortedA = sorted(a[0] ... a[k-1]) && sortedB = sorted(b[0] ... b[k-1]) && a.length == b.length}
 while () {

 }

}

Implementation 2:
public boolean arePermutations(String a, String b) {

 {inv: counts[0] = # of a’s in a[0], ..., a[i-1], ..., counts[25] = # of z’s in a[0], ..., a[i-1] && a.length == b.length}
 while () {

 }

 {inv: counts[0] >= 0, ... , counts[25] >= 0 && a.length == b.length}
 while () {

 }

}

Testing

3. For the previous implementations of arePermutations, write two test cases where the inputs result in
expected/actual behavior that is fundamentally different from each other. Write a brief explanation
convincing someone else why your test cases test different behavior.

Input: a = __________________________ and b = _________________________

Returns:

Explanation:

Input: a = __________________________ and b = __________________________

Returns:

Explanation:

4. Suppose we have a class IntPoly (similar to RatPoly in hw4). We would like to add a method to this class
that evaluates the IntPoly at a particular value x. In other words, given a value x, the method valueAt(x)
should return a0 + a1x + a2x2 + ... + anxn, where a0 through an are the coefficients of this IntPoly.
Suppose you have developed the following implementation of this method. Prove that your implementation
is correct by filling in the reasoning.

/** Return the value of this IntPoly at point x */

public int valueAt(int x) {

int val = a[0];

int xk = 1;

int k = 0;

int n = a.length-1; // degree of this, n >=0

{{ Inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k }}

while (k != n) {

 {{ __ }}

xk = xk * x;

 {{ __ }}

val = val + a[k+1]*xk;

 {{ __ }}

k = k + 1;

 {{ __ }}

}

 {{ __ }}

return val;

}

Specifications
5. Suppose we have a BankAccount class with instance variable balance. Consider the following three

specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount

@effects decreases balance by amount

Which specifications do each of these implementations meet? Write A, B, and/or C for each implementation.

Example:
void withdraw(int amount) {

 balance -= amount;

}

Specifications: ___A, B_____________________

I. void withdraw(int amount) {

 if (balance >= amount) balance -= amount;

}

Specifications: _________________________________

II. void withdraw(int amount) {

 if (amount < 0) throw new IllegalArgumentException();

 balance -= amount;

}

Specifications: _________________________________

III. void withdraw(int amount) throws InsufficientFundsException {

 if (balance < amount) throw new InsufficientFundsException();

 balance -= amount;

}

Specifications: _________________________________

6. Fill out the specification for following add method:
/**

 * Return a new IntPoly that is the sum of this and other

 *

 * @requires ___

 *

 * @modifies ___

 *

 * @effects ___

 *

 * @return ___

 *

 * @throws ___

 */

public IntPoly add(IntPoly other)

Defensive Programming
One of your colleagues is worried that the implementation below creates a potential representation exposure
problem. Another colleague says there’s no problem since an IntPoly is immutable.

public class IntPoly {

int a[];

// AF(this) = a has n+1 entries, and for each entry,

// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly

public int[] getCoeffs() {

return a;

}

}

7. Explain how representation exposure would be a problem here and change the implementation of getCoeffs
to fix the problem, but still return the coefficients of the IntPoly to the client. You may give a description of
the changes instead of writing Java code.

Object Equality
Suppose we are defining a class StockItem to represent items stocked by an online grocery store. Here is the start of
the class definition, including the class name and instance variables:

public class StockItem {

String name;

String size;

String description;

int quantity;

/* Construct a new StockItem */

public StockItem(...);

}

A summer intern was asked to implement an equals function for this class that treats two StockItem objects as
equal if their name and size fields match. Here’s the result:

/** return true if the name and size fields match */

public boolean equals(StockItem other) {

return name.equals(other.name) && size.equals(other.size);

}

8. This equals method seems to work sometimes but not always. Give an example showing a situation when it
fails. (Hint: Instantiate two objects that should be equal but are not.)

