Section 1: Code Reasoning

Bryan Van Draanen
Fall 2017
General staff email: cse331-staff@cs.washington.edu My email: bryanvd@cs.washington.edu Grading TA email: waylonh@cs.washington.edu

Introduction to code reasoning

- Determine what facts are true at each line of the program
- Accomplish two major goals:
- Prove code is correct
- Understand what your code is doing
- Essential for creating high quality and high complexity programs

Reasoning Techniques

- Forward Reasoning - determine what assertions follow from initial conditions
- Backward Reasoning - determine sufficient conditions which make a specific result true

Forward Reasoning Example 1

Suppose we know initially that: i >= 2
We want to ensure $z>1$ by the end

```
\(\mathbf{x}=\mathbf{i}\) * 2;
    // x = i * 2 and \(i>=2\)
\(\mathrm{y}=\mathrm{x}\);
    \(/ / y=x\) and \(x=i * 2\) and \(i>=2\)
\(z=(x+y) / 2 ;\)
    \(/ / z=(x+y) / 2\) and \(i>=2\) and \(x=i * 2\) and \(y=x\)
\(\Rightarrow / / z=(i * 2+i * 2) / 2=i * 2\)
\(\rightarrow / / z>=2\) * \(2=4\)
```

Since we can imply that $z>=4$ by the end, it follows that $z>1$ as well

Forward Reasoning Example 2

Suppose $\mathrm{x}>=1$ and $\mathrm{y}>=1$
We want to see what possible values z evaluates to by the end

$$
\begin{aligned}
& \mathbf{x}=\mathbf{x}+\mathbf{y} ; \\
& \quad / / \mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{y} \text { and } \mathrm{x}_{0}>=1 \text { and } \mathrm{y}>=1 \\
& \mathbf{y}=20 ; \\
& \quad / / y_{1}=20 \text { and } y_{0}>=1 \text { and } \mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{y}_{0} \text { and } \mathrm{x}_{0}>=1 \\
& \mathbf{z}=\mathrm{y}-\mathbf{x} ; \\
& \quad / / \mathrm{z}=\mathrm{y}_{1}-\mathrm{x}_{1} \text { and } \mathrm{y}_{1}=20 \text { and } \mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{y}_{0} \text { and } \mathrm{y}_{0}>=1 \text { and } \mathrm{x}_{0}>=1 \\
& \Rightarrow / / \mathrm{z}=20-\mathrm{x}_{1} \text { and } \mathrm{x}_{1}>=1+1=2 \\
& \Rightarrow / / \mathrm{z}<=20-2=18
\end{aligned}
$$

The possible values of z are all integers less than or equal to 18

Forward Reasoning Example 3

Suppose $\mathrm{x}!=0$ and $\mathrm{w}>=3$
We want to know what values z is greater than or equal to by the end

$$
\begin{aligned}
& \mathrm{q}=\mathrm{w} / 2 ; \\
& \quad / / \mathrm{q}>=1 \text { and } \mathrm{x}!=0 \text { and } \mathrm{w}>=3 \\
& \mathrm{y}=\mathrm{x} * \mathrm{x} ; \\
& \quad / / \mathrm{q}>=1 \text { and } \mathrm{y}>0 \text { and } \mathrm{x}!=0 \text { and } \mathrm{w}>=3 \\
& \mathrm{z}=\mathrm{q} * \mathrm{y} ; \\
& \quad / / \mathrm{z}=\mathrm{q} * \mathrm{y} \text { and } \mathrm{q}>=1 \text { and } \mathrm{y}>0 \text { and } \mathrm{x}!=0 \text { and } \mathrm{w}>=3 \\
& \Rightarrow / / \mathrm{z}>=1 * 1=1
\end{aligned}
$$

z is greater than or equal to 1

Backward Reasoning Example 1

Suppose we want to show that $z>=6$ by the end
What needs to be true about i?

$$
\begin{aligned}
& \quad / / i * 4>=8 \text { or equivalently } i>=2 \\
& \mathbf{x}=\mathbf{i} * 4 ; \\
& \quad / / \mathbf{x}+4>=12 \text { or equivalently } \mathbf{x}>=8 \\
& \mathbf{i}=\mathbf{x}+4 ; \\
& \quad / / i / 2>=6 \text { or equivalently } i>=12 \\
& \mathbf{z}=i / 2 ; \\
& \quad / / \mathbf{z}>=6
\end{aligned}
$$

Backward Reasoning Example 2

Suppose we want to show that $z<=10$ by the end What needs to be true about \mathbf{x} and \mathbf{y} ?

$$
\begin{aligned}
& / / x+y>=10 \\
& \mathbf{x}=\mathbf{x}+\mathbf{y} ; \\
& / / 20-x<=10 \text { or equivalently } x>=10 \\
& \mathbf{y}=20 ; \\
& / / y-x<=10 \\
& \mathbf{z}= y-x ; \\
& / / z<=10
\end{aligned}
$$

Backward Reasoning Example 3

Suppose we want to show that $\mathbf{x}>0$ by the end What needs to be true initially?

$$
\begin{aligned}
& / / x+3 * c>4 \\
\mathrm{a}= & \mathrm{x}+\mathrm{c} \\
& / / \mathrm{a}+2 * \mathrm{c}>4 \\
\mathrm{~b}= & 2 * \mathrm{c}-4 \\
& / / \mathrm{a}+\mathrm{b}>0 \\
\mathrm{x}= & \mathrm{a}+\mathrm{b} \\
& / / \mathrm{x}>0
\end{aligned}
$$

Worksheet

- 20 Minutes - Get as far as you can and don't worry if you get stuck!
- Feel free to collaborate with other students and ask me questions
- Go over solutions in slides after

Forward Reasoning Solutions

Worksheet - Problem 1

What is the value of z by the end in terms of x and y ?

```
    // x > 0 and \(y>0\)
\(\mathrm{w}=\mathrm{x}\) * y ;
    // w = \(x\) * \(y\) and \(x>0\) and \(y>0\)
\(\mathrm{q}=\mathrm{x}\) * x ;
    // \(q=x\) * \(x\) and \(w=x\) * \(y\) and \(x>0\) and \(y>0\)
z = w / q;
    // z = y/x and \(x>0\) and \(y>0\)
```


Worksheet - Problem 2

What are the possible values of z by the end of the code?

```
    \(/ / \mathrm{x}>=0\) and \(\mathrm{y}>=0\)
\(y=25 ;\)
    // \(y=25\) and \(x>=0\)
\(\mathbf{x}=\mathbf{x}+\mathbf{y}\);
    // x >= 25 and \(y=25\)
\(\mathbf{x}=\operatorname{sqrt}(x)\);
    \(/ / \mathrm{x}>=5\) and \(\mathrm{y}=25\)
\(\mathbf{z}=\mathbf{y}-\mathbf{x}\);
    // z <= 20
```


Worksheet - Problem 3

What are the possible values for z by the end?

```
    // \(x\) != 0 and \(y<0\)
\(\mathbf{z}=\mathbf{x}\) * \(\mathbf{x}\);
    // z > 0 and x != 0 and \(\mathrm{y}<0\)
z = z * y ;
    // z < 0 and x != 0 and \(\mathrm{y}<0\)
z = \(\mathbf{z}^{*} \mathbf{x}\);
    // z > 0 or \(z<0\)
\(\rightarrow / / \mathrm{z}\) ! \(=0\)
```


Backward Reasoning Solutions

Worksheet - Problem 4

What are the sufficient conditions to ensure $z \quad!=-1$ by the end?

```
    // y != -2 and y != -3
x = y / 2;
    // x != -1
z = x * 2;
    // z != -2
z = z + 1;
    // z != -1
```


Worksheet - Problem 5

What must be true initially for $y>20$ by the end?

$$
\begin{gathered}
/ / x<1 \\
x=1-x ; \\
\quad / / x>0 \\
x=x+10 ; \\
\quad / / x>10 \\
y=2 * x ; \\
\quad / / y>20
\end{gathered}
$$

Worksheet - Problem 6

What must be true initially for $\mathrm{x}>\mathrm{y}$ and $\mathrm{y}>\mathrm{z}$ by the end?
// a < 4 and $\mathrm{b}<-\mathrm{a}$
$\mathrm{b}=-\mathrm{b}$;
// a < 4 and b > a
z = a * 2;
// a < 4 and $a+b>z$
$\mathbf{x}=\mathrm{b}+4$
// $x>a+b$ and $a+b>z$
$\mathrm{y}=\mathrm{a}+\mathrm{b}$;
// x > y and y > z

Conditional Reasoning (Forward)

What are the possible values of z after the if statement?

```
    // y = 5
if (x < 0) {
        // y = 5 and x < 0
    z = x - y + 1;
        // z <= -5
}
else {
        // y = 5 and x >= 0
    z = x + y;
        // z >= 5
}
    // z >= 5 or z <= -5
```


Conditional Reasoning (Backward)

What must be true initially to ensure $z=0$ at the end?

```
    // (bCondition and a + b = 0) or (!bCondition and x + y = 0)
if (bCondition) {
    // a + b = 0
    z = a + b;
    // z = 0
}
else {
    // x + y = 0
    z = x + y;
    // z = 0
}
    // z = 0
```


Conditional Reasoning Solution

Worksheet - Problem 7 (Forward Reasoning)

Prove that the following code calculates the absolute value of x

```
        // true
if ( \(x>0\) ) \(\{\)
        // x > 0
    abs = \(\mathbf{x}\);
        // x > 0 and abs = \(x\)
\}
else \{
    \(/ / x<=0\)
    abs \(=-x\);
        \(/ / x<=0\) and abs \(=-x\)
\}
    // ( \(x>0\) and \(a b s=x\) ) or \((x<=0\) and \(a b s=-x)\)
\(\Rightarrow / / \mathrm{abs}=|\mathrm{x}|\)
```

