
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2017

Lecture 23 – Summary & Advice
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)



Reminder

• Course evaluations:
– https://uw.iasystem.org/survey/183496
– please take some time to fill one out

• Final exam Monday

CSE331 Fall 2017 2



Final-exam

• Monday, 8:30-10:20 PM (ugh!)

• Comprehensive but strongly weighted towards the 1st half

• Practice final on the web
– almost all same types of questions as on the final:

• ADT: write (parts of) RI, AF, methods
• reasoning: write parts of a complex method
• testing: write tests for an ADT
• miscellaneous: multiple-choice / short answer

– but shorter: about half as long as the actual test

– reasoning problem will not be as complex

CSE331 Fall 2017 3



CSE 331 Fall 2017 4

Review from Lecture 1



What is the goal of CSE 331?

In short: to help you become better programmers

Specifically, to teach you how to write code of
• higher quality
• increased complexity

We will discuss tools and techniques to help with these

CSE 331 Fall 2017 5



What is high quality?

Code is high quality when it is

1. Correct
– everything else is of secondary importance

2. Easy to change
– most work is making changes to existing systems

3. Easy to understand
– needed for 1 & 2 above

CSE 331 Fall 2017 6



How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
– e.g., type checking compiler, @Override

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%
– none of these can be left out

CSE 331 Fall 2017 7



Scale makes everything harder

Modularity makes scale possible but it’s still hard…
• Time to write N-line program grows faster than linear

– good estimate is O(N1.05) [Boehm, ‘81]
• Bugs grow like Θ(N log N) [Jones, ‘12’]

– 10% are errors are btw modules [Seaman, ‘08]
– corner cases are more important with more users

• Comm. costs dominate schedules [Brooks, ‘75]

CSE 331 Fall 2017 8

Corollary: quality must be even higher, per line, in 
order to achieve overall quality in a large program



How do we cope with complexity?

We tackle complexity with modularity
• split code into pieces that can be built independently
• each must be documented so others can use it
• also helps understandability and changeability

In summary, we want our code to be:
1. correct
2. easy to change
3. easy to understand
4. modular

CSE 331 Fall 2017 9



What we covered in CSE 331

• Everything we covered relates to the 4 goals
• We used Java but the principles apply in any setting

CSE 331 Fall 2017 10

Correctness
1. Tools

• Git, Eclipse, JUnit, Javadoc, …
• Java libraries: equality & hashing
• Adv. Java: generics, assertions, …
• debugging

2. Inspection
• reasoning about code
• specifications

3. Testing
• test design
• coverage

Modularity
• module design & design patterns
• listeners & callbacks
• event-driven programming, MVC, GUIs

Changeability
• specifications
• ADTs

Understandability
• specifications
• Adv. Java: exceptions
• subtypes



CSE 331 Fall 2017 11

Advice



Write More Code

• The best way to improve is to practice

• Look for opportunities to write more code
– classes will not necessarily provide enough practice

12CSE 331 Fall 2017



Write Less Code

• The best way to reduce bugs is to write less code.
- more lines of code usually means more bugs

• The best way to improve your productivity is to write less code.
- your time is valuable!
- don’t waste it on unnecessary work

13CSE 331 Fall 2017



Promise as Little as Possible

• I.e., make your method specifications as weak as possible

• That means less work for you
- see the previous slide!
- don’t promise to solve problems you don’t actually have

• That makes your code easier to change in the future

• Exception: you can’t have preconditions in widely used libraries
- clients will try out your code on every input
- whatever you do becomes the specification no matter what 

you say about it

14CSE 331 Fall 2017



CSE 331 Fall 2017 15



Limit the Use of Abstraction

• Only introduce abstraction if it will pay for itself

• Abstractions usually make certain kinds of changes easier
- e.g., interpreter vs procedural design patterns

- one makes it easier to add operations, the other to add types

- ADTs make it easy to change the data representation
- the latter is common when optimizing for efficiency

• Adding abstraction is usually more work
- see the earlier slide!

• Abstraction pays for itself if it makes the code easier to understand
• BUT adding abstraction can make the code harder to understand

16CSE 331 Fall 2017



Prefer Correctness to Efficiency

• We are notoriously bad at guessing what will be inefficient
- if you guess wrong, you’ll waste time optimizing

• see the earlier slide!

• On the other hand, we can be pretty certain that users won’t like 
it when the program crashes

• First, make it correct. Then, find out what is slow and optimize

• Example: copying mutable inputs and outputs
- you can remove these copies later if it turns out to be slow

17CSE 331 Fall 2017



Don’t Trust Other Programmers

• Write assertions to check preconditions on code they call
- they should read the comments carefully, but they won’t

• Avoid representation exposure so they can’t break your code.

• Copy mutable inputs and outputs
- better yet, prefer immutable types

• Don’t let other programmers extend your classes
- relationship between sub- and super-class is often intimate
- either design for subclassing or disallow it
- prefer composition over inheritance

18CSE 331 Fall 2017



Don’t Trust Yourself Either!

• The first step is recognizing you have a problem…
• You will make mistakes — you can’t help that
- but you can stop those mistakes (bugs) from getting to users
- use multiple lines of defense: tools, code review, testing, ...

• Write assertions to check your assumptions
- if you can have mistakes in your code, you can have them in 

your proofs of correctness as well

• Write assertions to check that your loop invariants hold.
• Write assertions to check that your representation invariants hold.

19CSE 331 Fall 2017



Fail Fast

• When you detect that something is wrong, just crash
- (... if you can get away with it. Hide failures in client code.)

• This will make debugging much easier
- search from the failure to the defect (bug) is shorter if the 

failure occurs close to the defect

• This limits additional damage from the defect
- once we know there’s a mistake in our reasoning,

it’s hard to know what else could go wrong
- it could be very bad…

20CSE 331 Fall 2017



Write Tests before the Code

• It’s easier to have the energy for good testing beforehand
- finishing the code feels like crossing the finish line

• Thinking through the tests often makes the code easier to write
- forces you to think through all the cases you have to handle
- helps you realize which cases are the same

• Confirmation bias makes it hard to realize the cases you missed 
after you’ve written the code

• Write tests before the code... then write more tests after
- add tests for any special cases you missed

21CSE 331 Fall 2017



Test Code Should Be Obviously Right

• If your tests are wrong, they may not be testing anything at all

• For tests, correctness matters much more than anything else
- throw elegance and efficiency out the window
- throw changeability out the window (most of the time)

- (only testing one part per test limits how many tests have to change)

• It’s kind of fun to write brain-dead code
- take a break from style, efficiency, etc.

• Any code that is not obviously correct needs its own tests

22CSE 331 Fall 2017



Have Fun

• Programming should be fun

• You get to…
– create solely with the power of your imagination
– positively affects the lives of large numbers of people

23CSE 331 Fall 2017


