
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2017
Java GUIs

(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Reminders

• HW8 due today

• Section tomorrow on Android for HW9
– install Android Studio beforehand if you plan to use Android

2CSE331 Fall 2017

Review

• Event-driven program is one whose main loop waits for an event
and then processes it (over and over until quit time)
– this sort of loop is called an event loop

• Examples of event-driven programs: servers & GUIs

• Technicalities (IRL not necessarily for HW9):
– OSes only let you wait for certain types of events at once
– work around it by having another thread list for other types

• (but be careful about what work is done on which thread)

• GUIs differ in support for resizing
– Android / iPhone and bootstrap (HTML) support fixed sizes

3CSE331 Fall 2017

CSE 331 Fall 2017 4

Java AWT / Swing

References on Java AWT / Swing

Very useful start: Sun/Oracle Java tutorials
– http://docs.oracle.com/javase/tutorial/uiswing/index.html

Mike Hoton’s slides/sample code from CSE 331 Sp12 (lectures 23,
24 with more extensive widget examples)

– http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect23-GUI.pdf
– http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect24-Graphics.pdf
– http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect23-GUI-code.zip
– http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect24-Graphics-code.zip

Good book that covers this (and much more):
Core Java vol. I by Horstmann & Cornell

– there are other decent Java books out there too

5CSE331 Fall 2017

What not to do…

• Don’t try to learn the whole library: there’s way too much

• Don’t memorize – look things up as you need them
– expect to look things up as you switch from Android to

iPhone to HTML to ...

• Don’t miss the main ideas & fundamental concepts

• Don’t get bogged down implementing eye candy for HW9
– (unless you finish everything else)

6CSE331 Fall 2017

A very short history (1)

Java’s standard libraries have supported GUIs from the beginning

Original Java GUI: AWT (Abstract Window Toolkit)
– mapped Java UI to host system UI widgets
– limited set of user interface elements (widgets)

• lowest common denominator

Advantage: looks native
Disadvantage: “write once, debug everywhere”

7CSE331 Fall 2017

A very short history (2)

Swing: newer GUI library, introduced with Java 2 (1998)
– Android Studio, IntelliJ built using Swing

Basic idea: underlying system provides only a blank window
– Swing draws all UI components directly
– doesn’t use underlying system widgets
– (built on top of parts of AWT)

Advantage: should work the same on all platforms
– less testing work in general (but be skeptical of that claim)

Disadvantage: doesn’t look like a native GUI for that OS

8CSE331 Fall 2017

A very short history (3)

SWT: improved version of AWT approach (2004?)
– tries to expose all the functionality of native GUIs
– Eclipse is built using SWT
– not part of the standard Java library

Two choices:
1. Use Swing to make a GUI that looks / works consistently
2. Use SWT to make a native-looking GUI on each platform

Option 1 is less work.
Option 2 usually makes users happier.

We’ll cover Swing since it’s standard Java...
9CSE331 Fall 2017

A very short history (4)

Android: platform for writing phone/tablet apps with Java
– not part of the standard Java library
– open source project from Google

Conceptually similar to AWT/Swing
– but Android devices should look and behave similarly

Unfortunately cannot reuse AWT/Swing code

10CSE331 Fall 2017

Main topics to learn

Using AWT/Swing components (a.k.a. widgets):
– different types of components [today]
– how to lay them out in a window [Friday]
– how to handle widget events [last time]

Writing your own components [Friday]:
– how to draw your own UI
– how to handle lower level events

11CSE331 Fall 2017

GUI terminology
window: A first-class citizen of the graphical desktop

– also called a top-level container
– Examples: frame (window), dialog box

component: A GUI widget that resides in a window
– called controls in many other languages
– Examples: button, text box, label

container: A component that hosts (holds) components
– Examples: frame, panel, box

12CSE331 Fall 2017

Some components…

CSE331 Fall 2017 13

Component and container classes

• Every GUI-related class
descends from Component,
which contains dozens of basic
methods and fields
– Examples: getBounds,
isVisible,
setForeground, …

• “Atomic” components: labels,
text fields, buttons, check boxes,
icons, menu items…

• Many components are
containers – things like panels
(JPanel) that can hold nested
subcomponents

14

Component

Container

JComponent

JPanel JFileChooser Tons of
JComponents

Various
AWT

containers

Lots of AWT
components

CSE331 Fall 2017

Swing/AWT inheritance hierarchy
Component (AWT)

Window
Frame

JFrame (Swing)
JDialog

Container
JComponent (Swing)

JButton JColorChooser JFileChooser
JComboBox JLabel JList
JMenuBar JOptionPane JPanel
JPopupMenu JProgressBar JScrollbar
JScrollPane JSlider JSpinner
JSplitPane JTabbedPane JTable
JToolbar JTree JTextArea
JTextField ...

15CSE331 Fall 2017

Component properties
Zillions. Each has a get (or is) accessor and a set modifier.
Examples: getColor,setFont,isVisible, …

name type description
background Color background	color	behind	component

border Border border	line	around	component
enabled boolean whether	it	can	be	interacted	with
focusable boolean whether	key	text	can	be	typed	on	it

font Font font	used	for	text	in	component
foreground Color foreground	color	of	component
height,	width int component's	current	size	in	pixels

visible boolean whether	component	can	be	seen
tooltip	text String text	shown	when	hovering	mouse

size,	minimum	/	maximum	
/	preferred	size

Dimension various	sizes,	size	limits,	or	desired	
sizes	that	the	component	may	take

CSE331 Fall 2017 16

Types of containers

• Top-level containers: JFrame, JDialog, …
– usually correspond to OS windows
– a “host” for other components
– live at top of UI hierarchy, not nested in anything else

• Mid-level containers: panels, scroll panes, tool bars
– sometimes contain other containers, sometimes not
– JPanel is a general-purpose component for drawing or

hosting other UI elements (buttons, etc.)

• Specialized containers: menus, list boxes, …

17CSE331 Fall 2017

JFrame – top-level window

• Graphical window on the screen

• Holds other components

• Common methods:
– JFrame(String title): constructor, title optional
– setDefaultCloseOperation(int what)

• What to do on window close
• JFrame.EXIT_ON_CLOSE terminates application

– setSize(int width, int height): set size
– setVisible(boolean b): make window visible or not

18CSE331 Fall 2017

Example

SimpleFrameMain.java

19CSE331 Fall 2017

JFrame – top-level window

• Graphical window on the screen

• Holds other components

• Common methods:
– JFrame(String title): constructor, title optional
– setDefaultCloseOperation(int what)

• What to do on window close
• JFrame.EXIT_ON_CLOSE terminates application

– setSize(int width, int height): set size
– setVisible(boolean b): make window visible or not
– add(Component c): add component to window

20CSE331 Fall 2017

CSE 331 Fall 2017 21

Android

Components

Many of the same ones
But some new ones
• spinner
• seek bar
• rating bar
• calendar view
• ad view
• ...

22CSE331 Fall 2017

Containers

Components are subclasses of View
Containers are subclasses of ViewGroup

Commonly used containers:
• grid
• list view
• linear layout (horizontal or vertical)
• positions children relative to others (e.g., above, to right, centered)

(Ideally, you would skip this and layout at fixed positions.)

First two can be easily used to display data
– (see HW9)

23CSE331 Fall 2017

Activities

Android uses a model similar to a web browser:
• each page is called an “activity”
• back button takes you back to the previous activity

Each app creates one or more activities
• main activity is (normally) started when the app starts
• startActivity(this, OtherActivity.class) starts another activity

Activity is notified when it is in use
• onCreate called to create the UI
• onStop called when it is no longer visible
• onDestroy called when it is destroyed

24CSE331 Fall 2017

CSE 331 Fall 2017 25

Back to Swing

Example

SimpleButtonDemo.java

26CSE331 Fall 2017

Where is the event loop?

GUIs are event-driven programs, so where is the event loop?

• It is created automatically by Swing
– presumably when we call frame.setVisible(true)

• The main method actually returns…

• Swing creates another thread to run the GUI event loop
– this is called the UI thread
– the Java VM does not quit the program until all threads exit

27CSE331 Fall 2017

Example

SimpleButtonDemo2.java

28CSE331 Fall 2017

JPanel – a general-purpose container

• Commonly used to hold a collection of button, labels, etc.
– (also has another use you will learn about in section)

• Needs to be added to a window or other container:
frame.add(new JPanel(…))

• JPanels can be nested to any depth

• Many methods/fields in common with JFrame (since both inherit
from Component)
– Can’t find a method/field? Check the superclasses.

A particularly useful method:
– setPreferredSize(Dimension d)

29CSE331 Fall 2017

Example

SimpleButtonDemo3.java

30CSE331 Fall 2017

CSE 331 Fall 2017 31

Layout in AWT/ Swing

Example

SimpleFieldDemo.java

32CSE331 Fall 2017

Containers and layout

• What if we add several components to a container?
– How are they positioned relative to each other?

• Answer: each container has a layout manger

CSE331 Fall 2017 33

Layout managers
Kinds:

– FlowLayout (left to right [changeable], top to bottom)
• Default for JPanel
• Each row centered horizontally [changeable]

– BorderLayout (“center”, “north”, “south”, “east”, “west”)
• Default for JFrame
• No more than one component in each of 5 regions
• (Of course, component can itself be a container)

– GridLayout (regular 2-D grid)

– Others... (Some are incredibly complex. None are perfect.)

34CSE331 Fall 2017

Layout managers
You can change the layout manager on any JComponent c

– c.setLayout(new GridLayout())

FlowLayout and BorderLayout are likely good enough for now…

(There are similar issues creating UI in HTML…)

35CSE331 Fall 2017

Example

SimpleFieldDemo2.java

36CSE331 Fall 2017

Example

SimpleFieldDemo3.java

37CSE331 Fall 2017

pack()

Instead of having the components lay out within the window size,
you can instead size the window to fit the components:

frame.pack();

pack() figures out the sizes of all components and calls the
container’s layout manager to set locations in the container

– (recursively as needed)

38CSE331 Fall 2017

Example

SimpleFieldDemo4.java

39CSE331 Fall 2017

Android Layout

Activity xml file specifies components layout

Add components from list of all possible components via drag-and-
drop mechanics in a graphical user interface and scale them to the
desired size

CSE331 Fall 2017 40

CSE 331 Fall 2017 41

Graphics and Drawing

Graphics and drawing (Swing)

What if we want to actually draw something?
– A map, an image, a path, …?

Answer: Override method paintComponent
– Components like JLabel provide a suitable paintComponent

that (in JLabel’s case) draws the label text
– Other components like JPanel typically inherit an empty
paintComponent and can override it to draw things

Note: As we’ll see, we override paintComponent but we don’t call it

42CSE331 Fall 2017

Graphics and drawing (Android)

What if we want to actually draw something?
– A map, an image, a path, …?

Answer: Override method onDraw
– Components like ImageView typically inherit an empty
onDraw and can override it to draw things

– Other components typically have attributes you edit in the
design interface or an xml file that allow you to edit the text
that appears (i.e. the text on a Button)

Note: As we’ll see, we override onDraw but we don’t call it

**“Drawing” in Android is synonymous to “Painting” in Swing

CSE331 Fall 2017 43

Example

SimplePaintMain.java

44CSE331 Fall 2017

Graphics methods

Many methods to draw various lines, shapes, etc., …

Can also draw images (pictures, etc.):
– In the program (not in paintComponent):

Image pic = ImageIO.read(new File(...));

– Then in paintComponent:
g.drawImage(pic, …);

45CSE331 Fall 2017

Graphics vs Graphics2D

Class Graphics was part of the original Java AWT
Has a procedural interface:

g.drawRect(…), g.fillOval(…), …

Swing introduced Graphics2D (extends Graphics)
– adds an object interface: draw(Shape s)
– adds other new capabilities (e.g., AffineTransform)
– see the documentation for details

Actual parameter to paintComponent is always a Graphics2D
– Can always cast this parameter from Graphics to
Graphics2D

– Graphics2D supports both sets of graphics methods
– Use whichever you like for CSE 331

46CSE331 Fall 2017

So who calls paintComponent?
And when??
• Answer: the window manager calls paintComponent

whenever it wants!!! (a callback!)
– When the window is first made visible, and whenever after

that some or all of it needs to be repainted
• Corollary: paintComponent must always be ready to repaint

regardless of what else is going on
– You have no control over when or how often
– You must store enough information to repaint on demand

• If “you” want to redraw a window, call repaint() from the
program (not from paintComponent)
– Tells the window manager to schedule repainting
– Window manager will call paintComponent when it

decides to redraw (soon, but maybe not right away)
– Window manager may combine several quick repaint()

requests and call paintComponent() only once
47CSE331 Fall 2017

Android – Graphics and drawing

CSE331 Fall 2017 48

Extend AppCompatImageView class and override onDraw method

Like paintComponent in Swing, we don’t call onDraw in Android
Instead, use invalidate() to request the app to be redrawn

Canvas parameter in onDraw like Graphics
parameter from paintComponent in Swing

Example

FaceMain.java

49CSE331 Fall 2017

How repainting happens (Swing)

50

program window manager (UI)
repaint()

paintComponent(g)

Notes:

• Always call repaint
not paintComponent

• Painting occurs
asynchronously

Asynchronous
Callback

CSE331 Fall 2017

How redrawing happens (Android)

51

program window manager (UI)
invalidate()

onDraw(canvas)

Notes:

• Call invalidate not
onDraw

• Painting occurs
asynchronously

Asynchronous
Callback

CSE331 Fall 2017

Crucial rules for painting (Swing)
• Always override paintComponent(g) if you want to draw on a

component
• Always call super.paintComponent(g) first
• NEVER, EVER, EVER call paintComponent yourself
• Always paint the entire picture, from scratch
• Use paintComponent’s Graphics parameter to do all the

drawing. ONLY use it for that. Don’t copy it, try to replace it, or
mess with it. It is quick to anger.

• DON’T create new Graphics or Graphics2D objects

Fine print: Once you are a certified™ wizard, you may find reasons
to do things differently, but that requires deeper understanding of
the GUI library’s structure and specification

52CSE331 Fall 2017

Crucial rules for drawing (Android)
• Always override onDraw(canvas) if you want to draw on a

component
• Always call super.onDraw(canvas) first
• NEVER, EVER, EVER call onDraw yourself
• Always paint the entire picture, from scratch
• Use onDraw’s Canvas parameter to do all the drawing. ONLY

use it for that. Don’t copy it, try to replace it, or mess with it. It is
quick to anger. (You can reuse Paint objects though!)

• DON’T create new Canvas objects

Fine print: Once you are a certified™ wizard, you may find reasons
to do things differently, but that requires deeper understanding of
the GUI library’s structure and specification

53CSE331 Fall 2017

Event handling and repainting (Swing)

54

program window manager (UI)

repaint()

paintComponent(g)

actionPerformed(e)

CSE331 Fall 2017

Event handling and repainting (Android)

55

program window manager (UI)

invalidate()

onDraw(g)

onClick(v)

CSE331 Fall 2017

What’s next – and not

You’re on your own to explore all the wonderful widgets in
Swing/AWT and Android.

– Have fun!!
– (But don’t sink huge amounts of time into eye candy)
– If you’re unsure what components to include, start reading

the Android/Swing or Android API to see what’s available!

56CSE331 Fall 2017

Larger example – bouncing balls

A hand-crafted MVC application. Origin is somewhere back in the
CSE142/3 mists. Illustrates how some swing GUI components can
be put to use.

Disclaimers:
– Not the very best design (maybe not even particularly good)
– Unlikely to be directly appropriate for your project
– Use it for ideas and inspiration, and feel free to steal small

bits if they really fit

Enjoy!

57CSE331 Fall 2017

IRL: threading issues
• ballSim is multithreaded

– one thread runs the simulation
• updates the model periodically with new ball positions

– one thread displays the UI

• easier to just use one thread
– can use javax.swing.Timer to be called periodically
– just make sure the work is done quickly (e.g., <100ms)
– (ballSim is not really thread-safe as written)

• if you use multiple threads: do not call UI methods from the
other (non-UI) threads
– one exception: repaint is (supposedly) thread safe
– use javax.swing.SwingUtilities.invokeLater to

schedule work to run on the UI thread
58CSE331 Fall 2017

