
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2017

Event-Driven Programming: Servers & GUIs
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Review

• Module Design
– reducing coupling
– supporting reuse (where easy)

• Events & Callbacks
– pass in code to be called when a certain event occurs
– can be synchronous or asynchronous (immediate or delayed)

• Today: event-driven programming
– most programs in nature are event-driven

• they spend most of the time waiting
– examples: (web) servers and GUIs (client programs)

• web server is waiting for client connections
• GUI client is waiting for a user event (mouse, key, touch, etc.)

2CSE331 Fall 2017

Event-driven programming

An event-driven program is designed to wait for events:
– program initializes then enters the event loop
– abstractly:

do {
e = getNextEvent();
process event e;

} while (e != quit);

Contrast with most programs we have written so far
– they perform specified steps in order and then exit
– that style is still used, just not as frequently

• example: computing Page Rank or other Big Data work

3CSE331 Fall 2017

Server Programming

• Servers sit around waiting for events like:
– new client connections
– new data from the client (large scale servers)

• Simple version (normal scale):

while (true) {
wait for a client to connect
process the request; send a response back

}

– (might want to use a new thread for processing)
– web servers usually look like this

4CSE331 Fall 2017

Sockets (off topic)

• Each client connection is represented by a “socket”

• A socket is like a file
– can be read from and written to
– (in Unix, sockets and files are nearly identical)

• Client and server each have “half” of the socket
– what the client writes is read by the server
– what the server writes is read by the client

5CSE331 Fall Fall 2017

client
socket

server
socketwrite

writeread

read

Example: Chat Server

ChatServer.java

(warning: some unfamiliar APIs…)

6CSE331 Fall 2017

Advanced Server Programming

• Large scale servers usually do not have one thread per client
– it would be hard to scale that past hundreds of clients

• Instead, they have a small number (1?) of threads that
simultaneously wait on events from all sockets
– new connections on the server socket
– new data to read on any client socket
– finish writing to any client socket

• (can then write more)
– handlers do not make any calls that might wait for something

• These servers look much more like GUI clients…

7CSE331 Fall 2017

GUI Client Programming

• Clients sit around waiting for events like:
– mouse move/drag/click, button press, button release
– keyboard: key press or release, sometimes with modifiers

like shift/control/alt/etc.
– finger tap or drag on a touchscreen
– window resize/minimize/restore/close
– timer interrupt (including animations)
– network activity or file I/O (start, done, error)

• (we will see an example of this shortly)

8CSE331 Fall 2017

Events in Java AWT/Swing/Android

AWT & Swing are the Java libraries for writing GUIs
Android apps are also GUIs and written in Java

Most of the GUI widgets can generate events
– button clicks, menu picks, key press, etc.

Events are handled using the Observer Pattern:
– objects wishing to handle events register as observers with

the objects that generate them
– when an event happens, appropriate method in each

observer is called
– as expected, multiple observers can watch for and be

notified of an event generated by an object

Likewise, advanced servers register handlers on each socket
9CSE331 Fall 2017

Event objects

GUI event is represented by an event object
– passes information often needed by the handler

In AWT/Swing, the superclass is AWTEvent. Some subclasses are:
ActionEvent – GUI-button press
KeyEvent – keyboard
MouseEvent – mouse move/drag/click/button

In Android, the superclass is InputEvent.

Event objects contain
– UI object that triggered the event
– other information depending on event. Examples:

ActionEvent – text string from a button
MouseEvent – mouse coordinates

10CSE331 Fall 2017

Event listeners / handlers

Event listeners must implement the proper interface. AWT/Swing:
KeyListener – handle key press
ActionListener – handle button press
MouseListener – handle mouse clicks
MouseMotionListener – handle mouse move/drag

When an event occurs
– the appropriate method specified in the interface is called:
actionPerformed, keyPressed, mouseClicked,
mouseDragged, …

– an event object is passed to the listener method

Interfaces are different in Android but all conceptually the same

11CSE331 Fall 2017

Example: button

Create a JButton and add it to a window
– (we will talk about windows next time)

Create an object that implements ActionListener
– contains an actionPerformed method

Add the listener object to the button’s listeners
– then it will be called when the button is pressed

ButtonDemo1.java

12CSE331 Fall 2017

Which button is which?

Q: A single button listener object can handle several buttons
How does it tell which button generated the event?

A: an ActionEvent has a getActionCommand method that
returns (for a button) the “action command” string

– default is the button name (text), but usually better to set it to
some string that will remain the same inside the program
code even if the UI is changed or button name is translated.
See button example.

Similar mechanisms to decode other events

For advanced servers, you may want to use one handler for all
“data to read” events on all client sockets.

13CSE331 Fall 2017

Listener classes

ButtonDemo1.java defines a class that is used only once to
create a listener for a single button.

Not ideal in a couple of respects:
– listener code is far away from where it’s used

• that makes it a little harder to understand
– it’s a lot of code for just one listener

• imagine doing this in a UI with thousands of components
• (that’s not a stretch)

A more convenient shortcut: anonymous inner classes

14CSE331 Fall 2017

Anonymous inner classes

Idea: define a new class directly in the new expression that creates
an object of the (new) anonymous inner class

– specify the superclass to be extended or interface to be
implemented

– override or implement methods needed in the anonymous
class instance

– can have methods, fields, etc., but not constructors

Tip: if it starts to get complex, use an ordinary class for clarity

Warning: ghastly syntax ahead

15CSE331 Fall 2017

Example: anonymous inner class

button.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e) {

model.doSomething()
}

}
);

16

new expression to
create class instance

Brackets surrounding
new class definition

Implementation of method
for this anonymous class

Method call
parameter list

Class or interface being
extended/implemented

(can include constructor
parameters)

CSE331 Fall 2017

Example: button

ButtonDemo2.java

17CSE331 Fall 2017

Lambdas (off topic)

Idea: why write a class at all when we just want to create a method
to be called after a button click?

An even more convenient shortcut: lambdas
– in Java 8, you can use lambdas to create anonymous

methods instead of creating an anonymous class that only
exists to house a method.

18CSE331 Fall 2017

Example: button

ButtonDemo3.java

19CSE331 Fall 2017

Example: GUI + sockets

Most modern client applications have to both
– display a GUI
– communicate with one or more servers
– (doing both creates additional difficulties…)

We can make an example by writing a GUI chat client

ChatClientGUI.java

20CSE331 Fall 2017

UI thread

• The event loop of a GUI program is run on the “UI thread”

• Often have need of additional threads
– example: chat UI needed one to listen for new messages
– any work that may take > 250ms should be done elsewhere

• Warning: most UI frameworks are not multi-thread safe
– this will not be an issue in this class but will be IRL
– very few UI API methods can be called from other threads
– instead, they provide ways to push work onto the UI thread

• pass a callback to be called from the UI thread
• then perform the UI changes you need there

CSE331 Fall 2017 21

Android similarities

• Events and listeners work in the same manner
• Here is code that listens for a button click:

Button btn = ...;
btn.setOnClickListener(new OnClickListener() {

@Override
public void onClick(View v) {

Log.d(“My Button”, “You pressed it”);
}

});

• Many of the same widgets as in AWT/Swing

CSE331 Fall 2017 22

Android differences

• Some new widgets (e.g., Spinner)
• Some new events related to touch & gestures (e.g., swipe)

• UI components laid out visually
rather than with Java code:
– stored as XML
– retrieve elements by ID

(since system creates them)

CSE331 Fall 2017 23

Android differences

Button btn = (Button)
findViewById(R.id.MyButton);

btn.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {

Log.d(“My Button”, “You pressed me”);
}

});

CSE331 Fall 2017 24

UI Trends

• AWT/Swing frame can be arbitrarily resized
– can see odd behavior at extremes and intermediate sizes
– larger testing burden

• Android / iPhone apps only need to support a fixed set of sizes
– create a fixed layout for each one

• Bootstrap web UI library (from Twitter) supports 5 sizes
– all intermediate sizes get extra padding on the outside
– provides the same advantages

• Expect to see more GUIs follow this approach

CSE331 Fall 2017 25

