CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2017

Events, Listeners, and Callbacks
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)




Reminders

* Quiz 5 due tonight

« HWS8 & 9 both posted

— start thinking about features you want for HW9
can add them to your model now

— model is usually much easier to test than view/controller

CSE331 Fall 2017



Review: Module Design

 Want to reduce coupling between modules
— makes each difficult to build & reason about independently
— makes bugs more likely
— makes each module more difficult to change
— (recall the properties of high quality code...)

« Want cohesion within a single module
— lack of cohesion suggests it could be split

« Superclass and subclass are often tightly coupled
— unseen dependencies such as patterns of “self calls”
— EJ: prefer composition

 Today: design examples and patterns to improve designs

CSE331 Fall 2017



Design exercise #1

Write a typing-break reminder program

Offer the hard-working user occasional reminders of the perils of
Repetitive Strain Injury, and encourage the user to take a break
from typing.

Naive design:
— Make a method to display messages and offer exercises
— Make a loop to call that method from time to time

CSE331 Fall 2017 4



TimeToStretch suggests exercises

public class TimeToStretch {
public void run() {
System.out.println (”Hey, you! Stop typing!");
suggestExercise() ;

}

public void suggestExercise () ({

CSE331 Fall 2017 5



Timer calls run () periodically

public class Timer ({
private TimeToStretch tts = new TimeToStretch() ;
public void start() {
while (true) {

if (enoughTimeHasPassed) {

tts.run|() ;

CSE331 Fall 2017



Main class puts it together

class Main {
public static void main(String[] args) {

Timer t = new Timer () ;

t.start () ;

This program, as designed, will work...
But we can do better

CSE331 Fall 2017



Module dependency diagram (MDD)

An arrow in a module dependency diagram (MDD) indicates
“depends on” or “knows about”

— simplistically: “any name mentioned in the source code”

Main

Main depends on Timer

TimeToStretch

</\" Timer depends

on TimeToStretch

What's wrong with this diagram?
— does Timer really need to depend on TimeToStretch?

— IS Timer re-usable in a new context?

CSE331 Fall 2017 8



Decoupling

Timer needs to call the run method
— Timer does not need to know what the run method does

Weaken the dependency of Timer on TimeToStretch
— introduce a weak specification for what Timer needs

public interface TimerTask ({

public void run() ;

Timer only needs to know that something (e.g., TimeToStretch)
meets the TimerTask specification

CSE331 Fall 2017 9



TimeToStretch (version 2)

public class TimeToStretch implements TimerTask ({
public void run() {
System.out.println("Stop typing!");

suggestExercise() ;

public void suggestExercise() ({

CSE331 Fall 2017 10



Timer (version 2)

public class Timer ({
private TimerTask task;
public Timer (TimerTask task) {
this.task = task;

}
public void start() ({
while (true) {

ééék.run();
}
}

}

Main creates a TimeToStretch object and passes it to Timer:
Timer t = new Timer (new TimeToStretch())

t.start () ;

CSE331 Fall 2017

11



Module dependency diagram (version 2)

« Timer depends on TimerTask, not TimeToStretch
— unaffected by implementation details of TimeToStretch
— now Timer iS much easier to reuse
— Main depends on the constructor for TimeToStretch

« Main still depends on Timer (is this necessary?)

Main \

TimerTask < Timer
TimeToStretch —> Dependence

T Subtype
CSE331 Fall 2017 12



The callback design pattern

An alternative: use a callback to invert the dependency

TimeToStretch creates a Timer, and passes in a reference to itself
so the Timer can call it back

— this is a callback
— call from module to a client that it notifies about some condition

The callback inverts a dependency
— inverted dependency: TimeToStretch depends on Timer
(not vice versa)

* less obvious coding style, but more “natural” dependency
— side benefit: Main does not depend on Timer

CSE331 Fall 2017 13



Callbacks

Callback: “code” provided by client to be used by library
e in Java, pass an object with the “code” in a method

Synchronous callbacks:
» useful when library needs the callback result immediately
« examples: HashMap calls its client’'s hashCode, equals

Asynchronous callbacks:
* register to indicate interest and where to call back
« examples: GUI events, timers

« useful when the callback should be performed later
(when some interesting event occurs)

CSE331 Fall 2017

14



TimeToStretch (version 3)

public class TimeToStretch extends TimerTask {

private Timer timer; Register interest
public TimeToStretch() { with the timer
timer = new Timer (this);

}
public void start() ({

timer.start () ;

} T)/ Callback entry point
public void run {

System.out.println("Stop typing!");
suggestExercise () ;

CSE331 Fall 2017 15



Main (version 3)

TimeToStretch tts = new TimeToStretch() ;

tts.start () ;

— uses a callback in TimeToStretch to invert a dependency

— this MDD shows the inversion of the dependency between
Timer and TimeToStretch (compare to version 1)

Main

Main does not depend on Timer
TimeToStretch depends on Timer

TimerTask

< Timer

A

TimeToStretch /

CSE331 Fall 2017 16



Decoupling and design

« Good design has dependences (coupling) only where sensible

« While you design (before you code), examine dependences
— don’t introduce unnecessary coupling!

« Coupling is an easy temptation if you code first
— suppose a method needs information from another object:
— if you hack in a way to get it:
« will damage the code’s modularity and reusability
 more complex code is harder to understand
— (coupling is the “friction” of building large software)

CSE331 Fall 2017

17



Design exercise #2

A program to display information about stocks
— stock tickers
— spreadsheets
— graphs

Naive design:
— make a class to represent stock information

— that class updates all views of that information (tickers,
graphs, etc.) when it changes

CSE331 Fall 2017

18



Module dependency diagram

« Main class gathers information and stores in Stocks
« Stocks class updates viewers when necessary

Main
v
Stocks >StockTicker
Spreadsheet
StockGraph

Problem: To add/change a viewer, must change Stocks

— problem only if we want to allow others to add new viewers
Better: insulate Stocks from the vagaries of the viewers
CSE331 Fall 2017 19



Weaken the coupling

What should sStocks class know about viewers?
— only needs an update method to call with changed data
— old way:

void updateViewers () ({
ticker.update (newPrice) ;
spreadsheet.update (newPrice) ;
graph.update (newPrice) ;
// Edit this method to
// add a new viewer. ®

CSE331 Fall 2017



Weaken the coupling

What should Stocks class know about viewers?

— only needs an update method to call with changed data

— new way: The “observer pattern”

interface PriceObserver {
void update (PriceInfo pi) ;

}

class Stocks {

private List<PriceObserver> observers;
void addObserver (PriceObserver pi) ({

observers.add (pi) ;

}

void notifyObserver (PriceInfo i)
for (PriceObserver obs : observers)
obs.update (1) ;

Register a
callback

Do the callbacks

~ 1




The observer pattern

« Stocks not responsible for viewer creation
« Main passes viewers to Stocks as observers
« Stocks keeps list of PriceObservers, notifies them of changes

Create viewers and

get observers

Create Stocks and
add observers

Main
/ PriceObserver
\ 4 A
xS
Stocks 096(&
StockTicken<
Create (or be) Spreadsheet<
observers
StockGraph<

* Issue: update method must pass enough information to

(unknown) viewers

CSE331 Fall 2017

22



A different design: pull versus push

 The Observer pattern implements push functionality
A pull model: give viewers access to Stocks, let them extract the

data they need

k
Main new(Stocks)
Stocks.new
\ 4
Stocks § 
\ StockTicker
Spreadsheet

StockGraph <

“Push” versus “pull” efficiency can depend on frequency of operations
(Also possible to use both patterns simultaneously.)

CSE331 Fall 2017

23



Another example of Observer pattern

// Represents a sign-up sheet of students

public class SignupSheet extends Observable ({
private List<String> students \§§§S?\\
= new ArraylList<String>() ; Part of the

public void addStudent(String student) { JDK

students.add (student) ;

setChanged() ;
notifyObservers() ;

}

public int size() ({
return students.size();

} SignupSheet inherits many methods including:
- void addObserver (Observer o)

} protected void setChanged()

void notifyObservers ()

CSE331 Fall 2017 24



An Observer

Part of the JDK

public class SignupObserver implements Observer ({

// called whenever observed object chg Not relevant to us

// and observers are notified
public void update (Observable o, Object arg) {
System.out.println("Signup count: "
+ ((SignupSheet)o) .size())

} cast because
Observable is

not generic ®

CSE331 Fall 2017 25



Registering an observer

SignupSheet s = new SignupSheet() ;

s .addStudent ("billg") ;

// nothing visible happens

s .addObserver (new SignupObserver()) ;
s.addStudent ("torvalds") ;

// now text appears: "Signup count: 2"

Java's “Listeners” (particularly in GUI classes) are examples of the
Observer pattern

(Feel free to use the Java observer classes in your designs — if they
are a good fit — but you don’t have to use them)

CSE331 Fall 2017 26



User interfaces: appearance vs. content

It is easy to tangle up appearance and content

— especially when supporting direct manipulation
(e.g., dragging line endpoints in a drawing program)

— example: program state stored in widgets in dialog boxes
Neither can be understood easily or changed easily

This destroys modularity and reusability
— over time, it leads to bizarre hacks and huge complexity

Callbacks, listeners, and other patterns can help

CSE331 Fall 2017 27



Advice

« Worry about dependencies
— they make code hard to change

« But also worry about simplicity
— sometimes the cure is worse than the disease

— don’t introduce lots of new concepts and abstraction in order to
fix what is not really a problem

— Example: what if ticker, spreadsheet, and graph are the only
observers we ever need?

CSE331 Fall 2017 28



