
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2017
Testing

(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)



How do we ensure correctness?

Best practice: use three techniques

1. Tools
– e.g., type checking, @Override, libraries, etc.

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%

CSE 331 Fall 2017 2



What can you learn from testing?

“Program testing can be used to show 
the presence of bugs, but never to 
show their absence!”

Edsgar Dijkstra
Notes on Structured Programming, 

1970

Testing is essential but it is insufficient by itself
- need tools and inspection and testing to ensure correctness

3CSE331 Fall 2017



How do we ensure correctness?

No single activity or approach can guarantee correctness

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

-Donald Knuth, 1977

Trying it is a surprisingly useful way to find mistakes!

We need tools and inspection and testing to ensure correctness

4CSE331 Fall 2017



Why you will care about testing

• Industry-wide trend toward developers doing more testing
– 20 years ago we had large test teams

• developers barely tested their code at all
– now, test teams are small to nonexistent

• e.g., Google may not have any

• Reasons for this change:
1. easy to update products after shipping (users are testers)
2. often lowered quality expectations (startups, games)

• some larger companies want to be more like startups

• In all likelihood, you will be expected to test your own code
• This has positive and negative effects…

CSE331 Fall 2017 5



It’s hard to test your own code

Your psychology is fighting against you:
• confirmation bias

– tendency to avoid evidence that you’re wrong
• operant conditioning

– programmers get cookies when the code works
– testers get cookies when the code breaks

You can avoid some effects of confirmation bias by

writing most of your tests before the code

Not much you can do about operant conditioning

6CSE331 Fall 2017



Outline

• Background
• Kinds of testing:

– black-box testing
– clear-box testing
– regression testing

• Basic approach to testing
• Heuristics for good test suites

– code coverage
• Tools

CSE331 Fall 2017 7



Kinds of testing

• Testing field has terminology for different kinds of tests
– we won’t discuss all the kinds and terms

• Here are three orthogonal dimensions [so 8 varieties total]:

– unit testing versus system/integration testing
• one module’s functionality versus pieces fitting together

– black-box testing versus clear-box testing
• did you look at the code before writing the test?

– specification testing versus implementation testing
• test only behavior guaranteed by specification or other 

behavior expected for the implementation?

CSE331 Fall 2017 8



Unit Testing

• A unit test focuses on one class / module (or even less)
– could write a unit test for a single method

• Tests a single unit in isolation from all others

• Integration tests verify that the modules fit together properly
– usually don’t want these until the units are well tested

• i.e., unit tests come first

9CSE331 Fall 2017



How is testing done?

Write the test
1) Choose input / configuration
2) Define the expected outcome 

Run the test
3) Run with input and record the outcome
4) Compare observed outcome to expected outcome

10CSE331 Fall 2017



sqrt example

// throws: IllegalArgumentException if x<0
// returns: approximation to square root of x
public double sqrt(double x){…}

What are some values or ranges of x that might be worth probing?
x < 0 (exception thrown)
x ≥ 0 (returns normally)
around x = 0 (boundary condition)
perfect squares (sqrt(x) an integer), non-perfect squares
x<sqrt(x) and x>sqrt(x) – that's x<1 and x>1 (and x=1)
Specific tests: say x = -1, 0, 0.5, 1, 4 (probably want more)

11CSE331 Fall 2017



What’s So Hard About Testing?

“Just try it and see if it works...”

// requires: 1 ≤ x,y,z ≤ 10000
// returns:  computes some f(x,y,z)
int proc1(int x, int y, int z){…}

Exhaustive testing would require 1 trillion runs!
– impractical even for this trivially small problem

Key problem: choosing test suite
– Large/diverse enough to provide a useful amount of validation
– (Small enough to write/run in reasonable amount of time.)

12CSE331 Fall 2017



Approach: Partition the Input Space

Ideal test suite: 
Identify sets with “same behavior”

(actual and expected)
Test at least one input from each set

Two problems:

1. Notion of same behavior is subtle
• Naive approach: execution equivalence
• Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge
• If we had it, we wouldn’t need to test
• Use heuristics to approximate cheaply

13CSE331 Fall 2017



Naive Approach: Execution Equivalence

// returns:  x < 0     => returns –x
//           otherwise => returns x
int abs(int x) {

if (x < 0) return -x;
else       return x;

}

All x < 0 are execution equivalent:
– Program takes same sequence of steps for any x < 0

All x ≥ 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite

14CSE331 Fall 2017



Execution Equivalence Can Be Wrong

// returns:  x < 0     => returns –x
//           otherwise => returns x
int abs(int x) {

if (x < -2) return -x;
else       return x;

}

{-3, 3} does not reveal the error!

Two possible executions: x < -2 and x >= -2

Three possible behaviors:
– x < -2 OK, x = -2 or x= -1 (BAD)
– x >= 0 OK

15CSE331 Fall 2017



Revealing Subdomains

• A subdomain is a subset of possible inputs

• A subdomain is revealing for error E if either:
– every input in that subdomain triggers error E, or
– no input in that subdomain triggers error E

• Need test at least one input from a given subdomain
– if subdomains cover the entire input space, we are guaranteed

to detect the error if it is present

• The trick is to guess revealing subdomains for the errors present
– even though your reasoning says your code is correct,

make educated guesses where the bugs might be

16CSE331 Fall 2017



Example

For buggy abs, what are revealing subdomains?
– Value tested in comparison is a good (clear-box) hint

// returns:  x < 0     => returns –x
//           otherwise => returns x
int abs(int x) {

if (x < -2) return -x;
else       return x;

}

Example sets of subdomains:
– Which is best?

Why not:

… {-2} {-1} {0} {1} …
{…, -4, -3} {-2, -1} {0, 1, …}

CSE331 Fall 2017 17

{…,-6, -5, -4} {-3, -2, -1} {0, 1, 2, …}



Heuristics for Designing Test Suites

A good heuristic gives:
– for all errors in some class of errors E: high probability that 

some subdomain is revealing for E and triggers E
– not an absurdly large number of subdomains

Different heuristics target different classes of errors
– in practice, combine multiple heuristics 

• (we will see several)
– a way to think about and communicate your test choices

18CSE331 Fall 2017



Black-Box Testing

Heuristic: Explore alternate cases in the specification
Procedure is a black box:  specification visible, internals hidden

Example
// returns:  a > b => returns a
//           a < b => returns b
//           a = b => returns a
int max(int a, int b) {…}

3 cases lead to 3 tests
(4, 3)  => 4   (i.e. any input in the subdomain a > b)
(3, 4)  => 4   (i.e. any input in the subdomain a < b)
(3, 3)  => 3   (i.e. any input in the subdomain a = b)

19CSE331 Fall 2017



Black Box Testing: Advantages

Process is not influenced by component being tested
– avoids psychological biases we discussed earlier
– can only do this for your own code if you write tests first

Robust with respect to changes in implementation
– test data need not be changed when code is changed

Allows others to test the code (rare nowadays)

20CSE331 Fall 2017



More Complex Example

Write tests based on cases in the specification
// returns: the smallest i such
//          that a[i] == value
// throws:  Missing if value is not in a
int find(int[] a, int value) throws Missing

Two obvious tests:
(  [4, 5, 6], 5  ) => 1
(  [4, 5, 6], 7  ) => throw Missing

Have we captured all the cases?

Must hunt for multiple cases
– Including scrutiny of effects and modifies

21

(  [4, 5, 5], 5  ) => 1

CSE331 Fall 2017



Heuristic: Boundary Testing

Create tests at the edges of subdomains

Why? 
– Off-by-one bugs
– “Empty” cases (0 elements, null, …)
– Overflow errors in arithmetic
– Object aliasing

Small subdomains at the edges of the “main” subdomains have a high 
probability of revealing many common errors

– also, you might have misdrawn the boundaries

22CSE331 Fall 2017



Boundary Testing

To define the boundary, need a notion of adjacent inputs 

Example approach: 
– identify basic operations on input points
– two points are adjacent if one basic operation apart

Point is on a boundary if either:
– there exists an adjacent point in a different subdomain
– some basic operation cannot be applied to the point

Example: list of integers
– basic operations: create, append, set, remove
– adjacent points: <[2,3],[2,4]>, <[2,3],[2,3,3]>, <[2,3],[2]>
– boundary point: [ ] (can’t apply remove)

23CSE331 Fall 2017



Other Boundary Cases

Arithmetic
– smallest/largest values
– zero

Objects
– null
– list containing itself

• maybe a bit too pathological

– same object passed as multiple arguments (aliasing)

All of these are common cases where bugs lurk
• you’ll find more as you encounter more bugs

24CSE331 Fall 2017



Boundary Cases: Arithmetic Overflow
// returns: |x|
public int abs(int x) {…}

What are some values or ranges of x that might be worth probing?
– x < 0 (flips sign) or x ≥ 0 (returns unchanged)
– Around x = 0 (boundary condition)
– Specific tests: say x = -1, 0, 1

How about…
int x = Integer.MIN_VALUE; // x=-2147483648
System.out.println(x<0);   // true
System.out.println(Math.abs(x)<0); // also true!

From Javadoc for  Math.abs:
Note that if the argument is equal to the value of 
Integer.MIN_VALUE, the most negative representable int
value, the result is that same value, which is negative

25CSE331 Fall 2017



Boundary Cases: Duplicates & Aliases

// modifies: src, dest
// effects: removes all elements of src and
//          appends them in reverse order to 
//          the end of dest
<E> void appendList(List<E> src, List<E> dest) {

while (src.size()>0) {
E elt = src.remove(src.size()-1);
dest.add(elt);

}
}

What happens if src and dest refer to the same object?
– this is aliasing
– it’s easy to forget!
– watch out for shared references in inputs

26CSE331 Fall 2017



Heuristic: Clear (glass, white)-box testing

Focus on features not described by specification
– control-flow details (e.g., conditions of “if” statements in code)
– performance optimizations
– alternate algorithms for different cases

Common goal is high code coverage:
– ensure test suite covers (executes) all of the program
– assess quality of test suite with % coverage

• tools to measure this for you

Assumption implicit in goal:
– if high coverage, then most mistakes discovered
– far from perfect but widely used

27CSE331 Fall 2017



Clear-box Motivation
There are some subdomains that black-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x > CACHE_SIZE) {

for (int i=2; i <= x/2; i++) {
if (x % i == 0) 
return false;

}
return true;

} else {
return primeTable[x];

}
}

28CSE331 Fall 2017



Clear Box Testing:  [Dis]Advantages

• Finds an important class of boundaries
– yields useful test cases

• Consider CACHE_SIZE in isPrime example
– important tests CACHE_SIZE-1,  CACHE_SIZE,  CACHE_SIZE+1
– if CACHE_SIZE is mutable, may need to test with different 
CACHE_SIZE values

Disadvantage:
– buggy code tricks you into thinking it’s right once you look at it

• (confirmation bias)
– can end up with tests having same bugs as implementation
– so also write tests before looking at the code

29CSE331 Fall 2017



Code coverage: what is enough?

int min(int a, int b) {
int r = a;
if (a <= b) {

r = a;
}
return r;

}

• Consider any test with a ≤ b  (e.g., min(1,2))
– executes every instruction
– misses the bug

• Statement coverage is not enough

30CSE331 Fall 2017



Code coverage: what is enough?

int quadrant(int x, int y) {
int ans;
if (x >= 0)

ans=1;
else

ans=2;
if (y < 0)

ans=4;
return ans;

}

• Consider two-test suite: (2,-2) and (-2,2).  Misses the bug.
• Branch coverage (all tests “go both ways”) is not enough

– here, path coverage is enough (there are 4 paths)

31CSE331 Fall 2017

2 1

3 4



Code coverage: what is enough?

int countPositive(int[] a) {
int ans = 0;
for (int x : a) {

if (x > 0)
ans = 1; // should be ans += 1;

}
return ans;

}

• Consider two-test suite: {0,0} and {1}.  Misses the bug.
• Or consider one-test suite: {0,1,0}.  Misses the bug.

• Branch coverage is not enough
– here, path coverage is enough, but no bound on path-count!

32CSE331 Fall 2017



Code coverage: what is enough?

int sumOfThree(int a, int b, int c) {
return a+b;

}

• Path coverage is not enough
– consider test suites where c is always 0

• Typically a “moot point” since path coverage is unattainable for 
realistic programs
– but do not assume a tested path is correct
– even though it is more likely correct than an untested path

• Another example: buggy abs method from earlier in lecture

33CSE331 Fall 2017



Varieties of coverage
Various coverage metrics (there are more):

Statement coverage
Branch coverage
Loop coverage
Condition/Decision coverage
Path coverage

Limitations of coverage:
1. 100% coverage is not always a reasonable target

– may be high cost  to approach 100%
2. Coverage is just a heuristic

– we really want the revealing subdomains

34

increasing
number of
test cases 
required
(generally)

CSE331 Fall 2017



Pragmatics: Regression Testing

• Whenever you find a bug
– store the input that elicited that bug, plus the correct output
– add these to the test suite
– verify that the test suite fails
– fix the bug
– verify the fix

• Ensures that your fix solves the problem
– don’t add a test that succeeded to begin with!

• another reason to try to write tests before coding
• Protects against reversions that reintroduce bug

– it happened at least once, and it might happen again
(especially when trying to change the code in the future)

35CSE331 Fall 2017



Summary of Heuristics

• Test boundaries appearing in the specification
• Test boundaries appearing in the implementation
• Test boundaries that commonly lead to errors
• Tests to exercise every branch of the code

– all paths would be even nicer (but not always possible)
• Test any cases that caused bugs before (to avoid regression)

On the other hand, don't confuse volume with quality of tests
– look for revealing subdomains
– want tests in every subdomain not just lots of tests

36CSE331 Fall 2017



Testing Tools

• Modern development ecosystems have built-in support for testing

• Your homework introduces you to Junit
– standard framework for testing in Java

• You will see more sophisticated tools in industry
– systems that ensure tests pass before code is submitted
– libraries for creating fake implementations of other modules
– automated tools to test on every platform
– automated tools to find severe bugs (using AI)
– …

CSE331 Fall 2017 37



Testing Tips

• Write tests both before and after you write the code
– (clear-box tests come afterward)

• Be systematic: think through revealing subdomains & test each one

• Test your tests
– try putting a bug in to make sure the test catches it

• Test code is different from regular code
– changeability is less important; correctness is more important
– do not write any test code that is not obviously correct

• otherwise, you need to test that code too!
• unlike in regular code, it’s okay to repeat yourself in tests

38CSE331 Fall 2017


