
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2017

Lecture 4.5 – More Loops
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Reminders

• Reading Quiz 1 is due tonight

• HW2 on loops due next Thursday
– please start early
– some problems will take thought

• please ask for help if you get stuck

CSE 331 Fall 2017 2

Previously on CSE 331...

• Reasoning on straight-line code
– turn-the-crank process

• Loops are more difficult
– checking correctness requires a loop invariant
– checking correctness requires:

1. Invariant is true initially
2. Invariant remains true each time around the loop
3. Invariant implies post condition upon loop exit

• Loop invariants are especially crucial for tricky loops

CSE 331 Fall 2017 3

Previously on CSE 331...

Loop invariant contains the essence of the algorithm idea...
In fact, can usually deduce the code from the invariant:

• What is the easiest way to satisfy the loop invariant?
– gives you the initialization code

• When does loop invariant satisfy the postcondition?
– gives you the termination condition

• How will you make progress each iteration?
– gives you the last line(s) of the loop body

• How does the invariant change as you make progress?
– gives you the rest of the loop body

CSE 331 Fall 2017 4

Example: max of array

CSE 331 Fall 2017 5

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (?) {

??

}
{{ m = max(b[0], ..., b[n-1]) }}

Example: max of array

CSE 331 Fall 2017 6

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (?) {

??

}
{{ m = max(b[0], ..., b[n-1]) }}

Easiest way to make this hold?

Example: max of array

CSE 331 Fall 2017 7

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (?) {

??

}
{{ m = max(b[0], ..., b[n-1]) }}

Easiest way to make this hold?
Take i = 1 and m = max(b[0])

Example: max of array

CSE 331 Fall 2017 8

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (?) {

??

}
{{ m = max(b[0], ..., b[n-1]) }}

Example: max of array

CSE 331 Fall 2017 9

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (?) {

??

}
{{ m = max(b[0], ..., b[n-1]) }}

When does Inv imply postcondition?

Example: max of array

CSE 331 Fall 2017 10

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (?) {

??

}
{{ m = max(b[0], ..., b[n-1]) }}

When does Inv imply postcondition?
Happens when i = n

Example: max of array

CSE 331 Fall 2017 11

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

??

}
{{ m = max(b[0], ..., b[n-1]) }}

Example: max of array

CSE 331 Fall 2017 12

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

??

}
{{ m = max(b[0], ..., b[n-1]) }}

How do we progress toward termination?

Example: max of array

CSE 331 Fall 2017 13

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

??

}
{{ m = max(b[0], ..., b[n-1]) }}

How do we progress toward termination?
We start at i = 1 and end at i = n, so…

Example: max of array

CSE 331 Fall 2017 14

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

??

i = i + 1;

}
{{ m = max(b[0], ..., b[n-1]) }}

How do we progress toward termination?
We start at i = 1 and end at i = n, so
Try this.

Example: max of array

CSE 331 Fall 2017 15

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

??

i = i + 1;

}
{{ m = max(b[0], ..., b[n-1]) }}

When i becomes i+1, Inv becomes:
m = max(b[0], …, b[i])

Example: max of array

CSE 331 Fall 2017 16

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

??

i = i + 1;

}
{{ m = max(b[0], ..., b[n-1]) }}

How do we get
from m = max(b[0], …, b[i-1])
to m = max(b[0], …, b[i])?

Example: max of array

CSE 331 Fall 2017 17

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

??

i = i + 1;

}
{{ m = max(b[0], ..., b[n-1]) }}

How do we get
from m = max(b[0], …, b[i-1])
to m = max(b[0], …, b[i])?

Set m = max(m, b[i])

Example: max of array

CSE 331 Fall 2017 18

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

if (b[i] > m)

m = b[i];

i = i + 1;

}
{{ m = max(b[0], ..., b[n-1]) }}

How do we get
from m = max(b[0], …, b[i-1])
to m = max(b[0], …, b[i])?

Set m = max(m, b[i])

Example: max of array

CSE 331 Fall 2017 19

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

if (b[i] > m)

m = b[i];

i = i + 1;

}
{{ m = max(b[0], ..., b[n-1]) }}

Finding the loop invariant

Not every loop invariant is simple weakening of postcondition, but…
• that is the easiest case
• it happens a lot

In this class (e.g., exams):
• if I ask you to find the invariant, it will very likely be of this type
• I may ask you to inspect code with more complex invariants
• to learn about more ways of finding invariants: CSE 421

CSE 331 Fall 2017 20

Examples: finding loop invariants

1. sum of array
– postcondition: s = b[0] + b[1] + … + b[n-1]

CSE 331 Fall 2017 21

Examples: finding loop invariants

1. sum of array
– postcondition: s = b[0] + b[1] + … + b[n-1]
– loop invariant: s = b[0] + b[1] + … + b[i-1]

• gives postcondition when i = n
• gives s = 0 when i = 0

CSE 331 Fall 2017 22

Examples: finding loop invariants

1. sum of array
– postcondition: s = b[0] + b[1] + … + b[n-1]
– loop invariant: s = b[0] + b[1] + … + b[i-1]

• gives postcondition when i = n
• gives s = 0 when i = 0

2. max of array
– postcondition: m = max(b[0], b[1], …, b[n-1])

CSE 331 Fall 2017 23

Examples: finding loop invariants

1. sum of array
– postcondition: s = b[0] + b[1] + … + b[n-1]
– loop invariant: s = b[0] + b[1] + … + b[i-1]

• gives postcondition when i = n
• gives s = 0 when i = 0

2. max of array
– postcondition: m = max(b[0], b[1], …, b[n-1])
– loop invariant: m = max(b[0], b[1], ..., b[i-1])

• gives postcondition when i = n
• gives m = b[0] when i = 1

CSE 331 Fall 2017 24

Example: quotient and remainder

Problem: Set q to be the quotient of x/y and r to be the remainder

Precondition: x >= 0 and y > 0
Postcondition: q*y + r = x and 0 <= r < y
– i.e., y doesn’t go into x any more times

CSE 331 Fall 2017 25

Example: quotient and remainder

Problem: Set q to be the quotient of x/y and r to be the remainder

Precondition: x >= 0 and y > 0
Postcondition: q*y + r = x and 0 <= r < y
– i.e., y doesn’t go into x any more times

Loop invariant: q*y + r = x and 0 <= r
– postcondition is special case when we also have r < y
– this suggests a loop condition…

CSE 331 Fall 2017 26

Example: quotient and remainder

We want “r < y” when the conditions fails
– so the condition is r >= y
– can see immediately that the postcondition holds on loop exit

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Fall 2017 27

Example: quotient and remainder

Need to make the invariant hold initially…
– search for the simplest way that works
– can only have r (= q*y – x) >= 0 for all y if we take q = 0

int q = 0;

int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Fall 2017 28

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…
– if r >= y, then y goes into x at least one more time

int q = 0;

int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

q = q + 1;

r = r – y;

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Fall 2017 29

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…
– if r >= y, then y goes into x at least one more time

int q = 0;

int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

q = q + 1;

r = r – y;

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Fall 2017 30

{{ (q+1)*y + r-y = x and y <= r }}
{{ q*y + r-y = x and 0 <= r-y }}
{{ q*y + r = x and 0 <= r }}

(+y and -y cancel)

Example: Dutch National Flag

Given an array of red, white, and blue pebbles, sort the array so the
red pebbles are at the front, the white pebbles are in the middle,
and the blue pebbles are at the end

CSE 331 Fall 2017 31

Edsgar Dijkstra

Pre- and post-conditions

Precondition: Any mix of red, white, and blue

Postcondition:
– Red, then white, then blue
– Number of each color same as in original array

CSE 331 Fall 2017 32

Mixed colors: red, white, blue

Red White Blue

Pre- and post-conditions

Precondition: Any mix of red, white, and blue

Postcondition:
– Red, then white, then blue
– Number of each color same as in original array

Loop invariant should (essentially) have
• postcondition as a special case
• initial condition as a special case

Loop invariant describes continuum of partial progress
CSE 331 Fall 2017 33

Mixed colors: red, white, blue

Red White Blue

Example: Dutch National Flag

The first idea that comes to mind:

CSE 331 Fall 2017 34

like postcondition like initial condition

Example: Dutch National Flag

The first idea that comes to mind works.

Initial:

Iter 5:

Iter 10:

Iter 15:

Post:

CSE 331 Fall 2017 35

Other potential invariants

Any of these choices work, making the array more-and-more
partitioned as you go:

CSE 331 Fall 2017 36

Red White Blue Mixed

Red White BlueMixed

Red White BlueMixed

Red White BlueMixed

Precise Invariant

Need indices to refer to the split points between colors
– call these i, j, k

0 i j k n
Loop Invariant:
• 0 <= i <= j <= k <= n <= A.length
• A[0], A[1], …, A[i-1] is red
• A[i], A[i+1], …, A[j-1] is white
• A[k], A[k+1], …, A[n-1] is blue

No constraints on A[j], A[j+1], ..., A[k-1]

CSE 331 Fall 2017 37

Red White BlueMixed

Dutch National Flag Code

Invariant:

0 i j k n

Initialization?

CSE 331 Fall 2017 38

Red White BlueMixed

Dutch National Flag Code

Invariant:

0 i j k n

Initialization:
• i = j = 0 and k = n

CSE 331 Fall 2017 39

Red White BlueMixed

Dutch National Flag Code

Invariant:

0 i j k n

Initialization:
• i = j = 0 and k = n

Termination condition?

CSE 331 Fall 2017 40

Red White BlueMixed

Dutch National Flag Code

Invariant:

0 i j k n

Initialization:
• i = j = 0 and k = n

Termination condition:
• j = k

CSE 331 Fall 2017 41

Red White BlueMixed

Dutch National Flag Code
int i = 0, j = 0;

int k = n;

{{ Inv: 0 <= i <= j <= k <= n and A[0], …, A[i-1] is red and ... }}
while (j != k) {

// need to get j closer to k
// let try to increase j...

}

CSE 331 Fall 2017 42

Dutch National Flag Code

Three cases depending on the value of A[j]:

white

0 i j k n

red

0 i j k n

blue

0 i j k n
CSE 331 Fall 2017 43

Red White BlueMixed

Red White BlueMixed

Red White BlueMixed

Dutch National Flag Code
int i = 0, j = 0;

int k = n;

{{ Inv: 0 <= i <= j <= k <= n and A[0], …, A[i-1] is red and ... }}
while (j != k) {

if (A[j] is white) {
j = j+1;

} else if (A[j] is blue) {
swap A[j], A[k-1];
k = k - 1;

} else { // A[j] is red
swap A[i], A[j];
i = i + 1;
j = j + 1;

}
}

CSE 331 Fall 2017 44

Example: Binary Search

Problem: Given a sorted array A and a number x, find index of x
(or where it would be inserted) in A.

Idea: Look at A[n/2] to figure out if x is in A[0], A[1], ..., A[n/2] or in
A[n/2+1], ..., A[n-1]. Narrow the search for x on each iteration.

(This is an algorithm where you probably still need to go line-by-line even as you get
faster at reasoning...)

CSE 331 Fall 2017 45

Example: Binary Search

Problem: Given a sorted array A and a number x, find index of x
(or where it would be inserted) in A.

Idea: Look at A[n/2] to figure out if x is in A[0], A[1], ..., A[n/2] or in
A[n/2+1], ..., A[n-1]. Narrow the search for x on each iteration.

i j n

Loop Invariant: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1]
• A[i], ..., A[j-1] is the part where we don’t know relation to x

CSE 331 Fall 2017 46

Binary Search Code

i j n

Initialization?

CSE 331 Fall 2017 47

Binary Search Code

i j n

Initialization:
• i = 0 and j = n
• white region is the whole array

CSE 331 Fall 2017 48

Binary Search Code

i j n

Initialization:
• i = 0 and j = n
• white region is the whole array

Termination condition:
• i = j
• white region is empty
• if x is in the array, it is A[i-1]

– if there are multiple copies of x, this returns the last

CSE 331 Fall 2017 49

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {

// need to bring i and j closer together...
// (e.g., increase i or decrease j)

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2017 50

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2017 51

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2017 52

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2017 53

invariant satisfied since A[i-1] = A[m] <= x
(and A is sorted so A[0] <= … <= A[m])

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2017 54

invariant satisfied since x < A[m] = A[j]
(and A is sorted so A[m] <= ... <= A[n-1])

Aside on Termination

• Most often correctness is harder work than termination
– the latter follows from running time bound

• But also examples where termination is more interesting
– (cases with variable progress toward termination condition)
– quotient and remainder (Inv: q*y + r = x and r >= 0)
– binary search

• It’s easy to make a mistake and have no progress
– then the code may loop forever

• See 16su HW2 for a problem where correctness is trivial and
the only difficult part is checking that it terminates

CSE 331 Fall 2017 55

Example: Special Composites

Problem: Find the N-th largest number of the form 2a3b5c, for some
exponents a, b, c >= 0.

Idea: Generate these numbers in order (1 = 203050, 2 = 213050, ...)
until we get to the N-th.

Subproblem: given the first m numbers of this form, find m+1st.

Idea: Multiply every number by 2, 3, 5. Take the smallest result that
is larger than the m-th number.
• O(n2) if implemented naively
• O(n log n) if implemented using binary search for 2, 3, and 5
• O(n) if optimized

CSE 331 Summer 2017 56

Example: Special Composites

Optimization:
• Keep track of smallest index i such that 2 * A[i] > A[m-1]
• Do the same for 3 and 5. Call these indexes j and k
• Each iteration, we just need the smallest of these 3 numbers

Invariant:
• A is sorted
• P2: 2*A[0], ..., 2*A[i-1] <= A[m-1] < 2*A[i], ..., 2*A[m-1]
• P3 (using j) and P5 (using k)

CSE 331 Summer 2017 57

2 x

i

Special Composites Code

Initalization:
• Let A = [1] and m = 1

– (note that array A also changes in this algorithm)
• Then i = j = k = 0 since 1 < 2, 3, 5

CSE 331 Summer 2017 58

2 x

i

Special Composites Code

Termination:
• stop when m = N
• the N-th largest special composite is in A[m-1]

CSE 331 Summer 2017 59

2 x

i

Special Composites Code

int[] A = new int[N]; A[0] = 1;

int i = 0, j = 0, k = 0, m = 1;

{{ Inv: A[m-1] < 2*A[i], 3*A[j], 5*A[k] (... abridged ...) }}
while (m < N) {

A[m] = min(2*A[i], 3*A[j], 5*A[k]);

if (2*A[i] == A[m])

i = i + 1;

if (3*A[j] == A[m])

j = j + 1;

if (5*A[k] == A[m])

k = k + 1;

m = m + 1;

}

return A[m-1];

CSE 331 Summer 2017 60

Special Composites Code

int[] A = new int[N]; A[0] = 1;

int i = 0, j = 0, k = 0, m = 1;

{{ Inv: A[m-1] < 2*A[i], 3*A[j], 5*A[k] (... abridged ...) }}
while (m < N) {

A[m] = min(2*A[i], 3*A[j], 5*A[k]);

if (2*A[i] == A[m])

i = i + 1;

if (3*A[j] == A[m])

j = j + 1;

if (5*A[k] == A[m])

k = k + 1;

m = m + 1;

}

return A[m-1];

CSE 331 Summer 2017 61

Invariant says this is next

Preserves invariant:
- if 2*A[i] != A[m], then 2*A[i] > A[m]
- if 2*A[i] = A[m], then increasing i means

we move to 2*A[i+1], which is > A[m]

Special Composites Code

int[] A = new int[N]; A[0] = 1;

int i = 0, j = 0, k = 0, m = 1;

{{ Inv: A[m-1] < 2*A[i], 3*A[j], 5*A[k] (... abridged ...) }}
while (m < N) {

A[m] = min(2*A[i], 3*A[j], 5*A[k]);

if (2*A[i] == A[m])

i = i + 1;

if (3*A[j] == A[m])

j = j + 1;

if (5*A[k] == A[m])

k = k + 1;

m = m + 1;

}

return A[m-1];

CSE 331 Summer 2017 62

Why not ”else if” ?

Example: Sorted Matrix Search

Problem: Given a sorted a matrix M (of size m x n), where every
row and every column is sorted, find out whether a given number x
is in the matrix.

(darker color means larger)

(One) Idea: Trace the contour between the numbers <= x and > x
on each row to see if x appears.

CSE 331 Fall 2017 63

< x >= x

Sorted Matrix Search Code

Loop Invariant: M[i,0], ..., M[i,j-1] < x <= M[i,j], ..., M[i,n-1]
• will increase i from 0 to m
• for each i, need to find the right j

CSE 331 Fall 2017 64

i

j

Sorted Matrix Search Code

Initialization:

No obvious way to initialize so the invariant holds
To start in row 0 (i = 0), we need to search...

CSE 331 Fall 2017 65

i

j

Sorted Matrix Search Code

Initialization:

int i = 0;

int j = n;

{{ Inv: x <= M[i,j], ..., M[i,n-1] }}
while (j > 0 and x <= M[i,j-1])

j = j – 1;

{{ j = 0 or M[i,j-1] < x <= M[i,j], ..., M[i,n-1] }}

CSE 331 Fall 2017 66

i

j

Sorted Matrix Search Code

Loop body:
• when i increases, the invariant may be broken

– we have M[i,j] <= M[i+1,j], so everything to right is still bigger
– may need to decrease j to restore invariant for M[i,0], ..., M[i,j-1]
– this is the same issue came up in initialization

CSE 331 Fall 2017 67

i

j

Sorted Matrix Search Code

int i = 0;

int j = n;

while (i < n) {

{{ Inv: x <= M[i,j], ..., M[i,n-1] }}
while (j > 0 and x <= M[i,j-1])

j = j – 1;

{{ M[i,0], ..., M[i,j-1] < x <= M[i,j], ..., M[i,n-1] }}
if (j <= n-1 and x == M[i,j])

return true;

i = i + 1;

}

return false;

CSE 331 Fall 2017 68

i

j

