CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2017

Lecture 2 – Reasoning About Code With Logic
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)
Announcements

• Sign up for the discussion board (link also on the web site):
 – https://piazza.com/washington/fall2017/cse331

• Will post reasoning notes from previous quarters on the web

• HW1 posted
 – practice applying these ideas
 – builds up to verifying correctness of short, non-loop code
 – due on Tuesday by 11pm

• Reading quiz 1 posted
 – due next Friday by 11pm
 – no late days for these but I will drop lowest score
A Problem

“Write a method to return the index of the max of the first n elements of the array arr.”

```java
int indexOfMaximum(int[] arr, int n) {
    ...
}
```

Take a minute to think about how you’d write this…
A Solution?

Is this solution correct?

```java
int indexOfMaximum(int[] arr, int n) {
    int maxValue = arr[0];
    int maxIndex = 0;
    for (int i = 1; i < n; i++) {
        if (arr[i] > maxValue) {
            maxValue = arr[i];
            maxIndex = i;
        }
    }
    return maxIndex;
}
```
A Solution?

Is this solution correct?

```java
int indexOfMaximum(int[] arr, int n) {
    int maxValue = arr[0];
    int maxIndex = 0;
    for (int i = 1; i < n; i++) {
        if (arr[i] > maxValue) {
            maxValue = arr[i];
            maxIndex = i;
        }
    }
    return maxIndex;
}
```

Corner cases:
- What if there are ties?
- What if \(n \) is 0?

Error cases:
- What if \(arr.length < n \)?
- What if \(arr \) is null?
Morals

• You can all write the code

• **Step 1**: what does it mean to be correct?
 – that is called the “specification” for the function
 – can’t argue correctness if we don’t know what is correct

• Specifications are hard to write
 – there can be many corner cases and error cases
 – do we even want to specify behavior for all of these?
 • depends on the situation (more next time...)

• Takes work to show that the code is correct
 – we will learn how to make this easy
 – this is reasoning (and inspection)
Reasoning about code

Idea: determine what *facts* are true at each line of the program

- We would like to know:
 - at the end, `maxIndex` is index of the maximum element
 - at the end, negatives before zeros before positives in `arr`

- Get there by understanding what is true at each line until end
 - then check that those facts that are true at the end include all the things required by the *specification*
Why do this?

• Essential for building **high quality** programs
 – allows us to inspect code to check correctness
 – need all three: tools, *inspection*, & testing
 – inspection is even the most effective of the three

• Essential for building **high complexity** programs
 – allows us to build modular programs
 • each module has assumptions about how it will be used
 – misunderstandings btw module writers will cause bugs
 – assumptions must be clearly stated (and inspected)
Approaches

• We will discuss two approaches
 – forward reasoning: start at the top and work down
 – backward reasoning: start at the end and work up

• Plan:
 1. intuitive version (as seen in section)
 2. formal definitions & rules
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 \times w; \\
y = x + 2; \\
z = y / 2;
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 \times w;
\]

\[
// \ w \geq 1 \ and \ x = 2 \times w
\]

\[
y = x + 2;
\]

\[
z = y / 2;
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 \times w;
// w \geq 1 \text{ and } x = 2 \times w \implies x \geq 2 \times 1 = 2
\]

\[
y = x + 2;
\]

\[
z = y / 2;
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 \times w;
\]

\[
// w \geq 1 \text{ and } x = 2 \times w \implies x \geq 2 \times 1 = 2
\]

\[y = x + 2;
\]

\[
// w \geq 1 \text{ and } x = 2 \times w \text{ and } y = x + 2
\]

\[z = y / 2;
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 * w;
// w \geq 1 \text{ and } x = 2 * w \implies x \geq 2 * 1 = 2
\]

\[
y = x + 2;
// w \geq 1 \text{ and } x = 2 * w \text{ and } y = x + 2
// \implies y \geq 2 + 2 = 4
\]

\[
z = y / 2;
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 \times w;
\]

\[
// \ w \geq 1 \text{ and } x = 2 \times w \Rightarrow x \geq 2 \times 1 = 2
\]

\[
y = x + 2;
\]

\[
// \ w \geq 1 \text{ and } x = 2 \times w \text{ and } y = x + 2
\]

\[
// \Rightarrow y \geq 2 + 2 = 4
\]

\[
z = y / 2;
\]

\[
// \ w \geq 1 \text{ and } x = 2 \times w \text{ and } y = x + 2 \text{ and } z = y/2
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 \times w;
\]
\[
// \ w \geq 1 \ and \ x = 2 \times w \; => \; x \geq 2 \times 1 = 2
\]

\[
y = x + 2;
\]
\[
// \ w \geq 1 \ and \ x = 2 \times w \ and \ y = x + 2
\]
\[
// \ => \; y \geq 2 + 2 = 4
\]

\[
z = y / 2;
\]
\[
// \ w \geq 1 \ and \ x = 2 \times w \ and \ y = x+2 \ and \ z = y/2
\]
\[
// \ => \; z \geq 4/2 = 2
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) $w \geq 1$

\[
x = 2 \times w;
\]
// $w \geq 1$ and $x = 2 \times w$ \Rightarrow $x \geq 2 \times 1 = 2$

\[
y = x + 2;
\]
// $w \geq 1$ and $x = 2 \times w$ and $y = x + 2$
// \Rightarrow $y \geq 2 + 2 = 4$

\[
z = y / 2;
\]
// $w \geq 1$ and $x = 2\times w$ and $y = x+2$ and $z = y/2$
// \Rightarrow $z \geq 4/2 = 2$

What can we say at the end about z? $z \geq 2$
Forward Reasoning

• Forward reasoning:
 – informally, simulates the code (for all inputs at once)
 – formally, determine what follows from initial assumptions

• This is the way most programmers inspect their code

• Advantages and disadvantages:
 – intuitive
 – introduces (many) irrelevant facts
 • (more on ways to deal with this later...)
Example of Backward Reasoning

Suppose we want to show that $z \geq 1$ (at the end)
What needs to be true about w?

$$x = 2 \times w;$$

$$y = x + 2;$$

$$z = y / 2;$$

// $z \geq 1$
Example of Backward Reasoning

Suppose we want to show that \(z \geq 1 \) (at the end)
What needs to be true about \(w \)?

\[
x = 2 \times w;
\]
\[
y = x + 2;
\]
// \(y / 2 \geq 1 \) or equivalently \(y \geq 2 \)
\[
z = y / 2;
\]
// \(z \geq 1 \)
Example of Backward Reasoning

Suppose we want to show that \(z \geq 1 \) (at the end)
What needs to be true about \(w \)?

\[
x = 2 \times w;
// x + 2 \geq 2 \text{ or equivalently } x \geq 0
\]

\[
y = x + 2;
// y / 2 \geq 1 \text{ or equivalently } y \geq 2
\]

\[
z = y / 2;
// z \geq 1
\]
Example of Backward Reasoning

Suppose we want to show that $z \geq 1$ (at the end)
What needs to be true about w?

```
// 2 * w >= 0 or equivalently w >= 0
x = 2 * w;
// x + 2 >= 2 or equivalently x >= 0
y = x + 2;
// y / 2 >= 1 or equivalently y >= 2
z = y / 2;
// z >= 1
```
Backward Reasoning

• Backward reasoning:
 – determines sufficient conditions for end result
 • e.g., assumptions needed for correctness

• Advantages and disadvantages:
 – less intuitive
 – determines exactly what is necessary to achieve the goal
 – gives you another (powerful) way to reason about code
Our approach

- We will take a **methodical** approach to reasoning about code
 - spell everything out in detail to avoid any misunderstanding
 - (you can move more quickly as you get practice)

- Hoare Logic
 - named after its inventor, Sir Anthony Hoare (inventor of quicksort)
 - considers just assignments, if-statements, and while-loops
 - everything else can be built out of these
 - we will consider just integer-valued variables
 - for Java, we will need floats, strings, objects, etc.

- This lecture: assignments & if-statements; Next lecture: loops
Terminology

• The *program state* is the values of all the (relevant) variables

• An *assertion* is a logical formula referring to the program state (e.g., contents of variables) at a given point

• An assertion *holds* for a program state if the formula is true when those values are substituted for the variables

• An assertion before the code is a *precondition*
 – these represent assumptions about when that code is used

• An assertion after the code is a *postcondition*
 – these represent what we want the code to accomplish
Notation

• Instead of writing assertions as comments, Hoare logic uses {..}
 – since Java code also has {..}, I will use {{{...}}}
 – e.g., {{ w >= 1 }} x = 2 * w; {{ x >= 2 }}

• Assertions are math not Java
 – you can use the usual math notation
 • (e.g., = instead of == for equals)
 – purpose is communication with other humans (not computers)
 – we will need and, or, not as well
 • can also write use ∧ (and) ∨ (or) etc.

• The Java language also has assertions (assert statements)
 – throws an exception if the condition does not evaluate true
 – we will discuss these more later in the course
Hoare Logic

- A Hoare triple is two assertions and one piece of code:
 \[\{ \{ P \} \} \; S \; \{ \{ Q \} \} \]
 - \(P \) the precondition
 - \(S \) the code
 - \(Q \) the postcondition

- A Hoare triple \(\{ \{ P \} \} \; S \; \{ \{ Q \} \} \) is called **valid** if:
 - in any state where \(P \) holds, executing \(S \) produces a state where \(Q \) holds
 - i.e., if \(P \) is true before \(S \), then \(Q \) must be true after it
 - otherwise the triple is called **invalid**

- We will use this to argue correctness with \(S \) an entire method.
Example 1

Is the following Hoare triple valid or invalid?
- assume all variables are integers and there is no overflow

\[\{\{ x \neq 0 \}\} \quad y = x \times x; \quad \{\{ y > 0 \}\}\]
Example 1

Is the following Hoare triple valid or invalid?

– assume all variables are integers and there is no overflow

\[
\{ \{ x \neq 0 \} \} \ y = x*x; \ \{ \{ y > 0 \} \}
\]

Valid

• \(y \) could only be zero if \(x \) were zero (which it isn’t)
Example 2

Is the following Hoare triple valid or invalid?
 – assume all variables are integers and there is no overflow

\[
\{\{ z \neq 1 \}\} \ y = z*z; \ {\{ y \neq z \}\}
\]
Example 2

Is the following Hoare triple valid or invalid?
 - assume all variables are integers and there is no overflow

\[
\{\{ z \neq 1 \}\} \ y = z * z; \ \{\{ y \neq z \}\}\]

Invalid
 • counterexample: \(z = 0 \)
Example 3

Is the following Hoare triple valid or invalid?
- assume all variables are integers and there is no overflow

\[
\{ x \geq 0 \} \ y = 2 \times x; \ { y > x }\]
Example 3

Is the following Hoare triple valid or invalid?
- assume all variables are integers and there is no overflow

\[
\{\{ x \geq 0 \}\} \ y = 2 \times x ; \ \{\{ y > x \}\}\]

Invalid
- counterexample: \(x = 0 \)
Example 4

Is the following Hoare triple valid or invalid?

{{ }}
if (x > 7) {
 y = 4;
} else {
 y = 3;
}
{{ y < 5 }}
Example 4

Is the following Hoare triple valid or invalid?

```plaintext
{{
  if (x > 7) {
    y = 4;
  } else {
    y = 3;
  }
}{y < 5}}
```

Valid
• \(y \) is either 3 or 4; in either case, it is less than 5
Example 5

Is the following Hoare triple valid or invalid?

\[
\begin{align*}
\{ & \} \\
\text{x = y;} \\
\text{z = x;} \\
\text{\{ y = z \}}
\end{align*}
\]
Example 5

Is the following Hoare triple valid or invalid?

```
{{ }}
x = y;
z = x;
{{ y = z }}
```

Valid
Example 6

Is the following Hoare triple valid or invalid?

\[[x = 7 \text{ and } y = 5]\]

// swap x and y

tmp = x;

x = tmp;
y = x;

\[[x = 5 \text{ and } y = 7]\]
Example 6

Is the following Hoare triple valid or invalid?

\[
\{\{ x = 7 \text{ and } y = 5 \}\}
\]

// swap x and y

tmp = x;
x = tmp;
y = x;
\{\{ x = 5 \text{ and } y = 7 \}\}\]

Invalid

- first two lines leave \(x\) unchanged, so we get \(x = y = 7\)
The general rules

• Some of these require some thought
 – it would be preferable to do this without (much) thought
 – fortunately, there is a “turn the crank” way of doing these

• For each kind of construct, there is a general rule
 – assignment statements
 – two statements in sequence
 – conditionals
 – loops (next lecture)
Assignment Rule

\[
\{\{ P \} \} \ x = e; \ \{\{ Q \}\}
\]

- Let \(Q[x=e] \) be like \(Q \) except replace every \(x \) with \(e \)
 - after “\(x = e; \)”, \(Q \) and \(Q[x=e] \) are equivalent
 - but \(Q[x=e] \) does not involve \(x \) so it holds after “\(x = e; \)” if and only if it holds before
 - so we can consider \(P \) and \(Q[x=e] \) w/out the assignment
 - (This is backward reasoning.)

- This triple is valid iff: whenever \(P \) holds, \(Q[x=e] \) also holds
 - in logic, we’d say it is valid if \(P \) implies \(Q[x=e] \)
Assignment Rule Example

\{\{ z > 34 \}\} y = z + 1; \{\{ y > 1 \}\}

- $Q[y=\text{z+1}]$ is $z + 1 > 1$
 - this is equivalent to $z > 0$
 - whenever $z > 34$, we also have $z > 0$
 - this is valid
Sequence Rule

$$\{\{ P \} \} \ S1;S2 \ \{\{ Q \} \}$$

- Triple is valid iff: there is an assertion R such that
 - $\{\{ P \} \} \ S1 \ \{\{ R \} \}$ is valid and
 - $\{\{ R \} \} \ S2 \ \{\{ Q \} \}$ is valid

- For now, we will need to guess R
 - we will see shortly that we can find an R without guessing
Sequence Rule Example

\{\{ z \geq 1 \}\} y = z+1; w = y \cdot y; \{\{ w > y \}\}

• Choose \(R \) to be \(y > 1 \)
• Show \(\{\{ z \geq 1 \}\} y = z+1; \{\{ y > 1 \}\} \)
 – use assignment rule: \(z \geq 1 \) implies \(z+1 > 1 \)?
 – equivalently, \(z \geq 1 \) implies \(z > 0 \)? Valid.
• Show \(\{\{ y > 1 \}\} w = y \cdot y; \{\{ w > y \}\} \)
 – use assignment rule: \(y > 1 \) implies \(y \cdot y > y \)
 – requires some thought, but valid

• Both of these are triples valid, so the triple at the top is valid
Conditional Rule

\[
\{\{ P \}\} \text{ if (b) } \{S1\} \text{ else } \{S2\} \{\{ Q \}\}
\]

- When S1 executes, we know \(P \) and \(b \)
- When S2 executes, we know \(P \) and not \(b \)

- Triple is valid iff: there are assertions \(Q1 \) and \(Q2 \) such that
 - \(\{\{ P \text{ and } b \}\} S1 \{\{ Q1 \}\} \) is valid and
 - \(\{\{ P \text{ and not } b \}\} S2 \{\{ Q2 \}\} \) is valid and
 - \(Q1 \) or \(Q2 \) implies \(Q \)
 - (i.e., \(Q1 \) implies \(Q \) and \(Q2 \) implies \(Q \))
Conditional Rule

\[
\{\{ \} \} \text{ if } (x > 7) \{ y = x; \} \text{ else } \{ y = 20; \} \{\{ y > 5 \}\}
\]

- Let Q1 be \(y > 7 \) (other choices work too)
 - use assignment rule to show \(\{\{ x > 7 \}\} y = x; \{\{ y > 7 \}\} \)
- Let Q2 be \(y = 20 \) (other choices work too)
 - use assignment rule to show \(\{\{ x <= 7 \}\} y = 20; \{\{ y = 20 \}\} \)
- Check that \(y > 7 \) or \(y = 20 \) implies \(y > 5 \)
Weaker vs Stronger

If “whenever P1 holds, P2 also holds”, then:
- P1 is called **stronger** than P2
- P2 is called **weaker** than P1

- It is more (or at least as) “difficult” to satisfy P1
 - the program states where P1 holds are a subset of the states where P2 holds
- P1 puts more constraints on program states
- P1 is a stronger set of requirements

- We do not always have P1 stronger than P2 or vice versa!
 - most assertions are incomparable
Examples

• $x = 17$ is stronger than $x > 0$

• x is prime is neither stronger nor weaker than x is odd
 – these two statements are incomparable

• x is prime and $x > 2$ is stronger than x is odd and $x > 2$

• Many other examples...
Applications to Method Design

• When writing a method, you decide the preconditions
 – e.g., a parameter may be assumed positive
 – e.g., an array may be assumed to be non-empty

• There are advantages and disadvantages to weaker vs stronger
 – stronger preconditions make the code easier to change
 • there are more allowed implementations
 – weaker preconditions allow more uses
 • there are more allowed calls
 – stronger preconditions may make the code easier to write
 – weaker preconditions are necessary for libraries

• We will discuss this more later on…
Applications to Hoare Logic

• Suppose:
 – \{\{ P \}\} S \{\{ Q \}\} is valid and
 – some \(P_1 \) is stronger than \(P \) and
 – some \(Q_1 \) is weaker than \(Q \)

• Then these are all valid too:
 – \{\{ P_1 \}\} S \{\{ Q \}\}
 • a state where \(P_1 \) holds is one where \(P \) also holds
 – \{\{ P \}\} S \{\{ Q_1 \}\}
 • a state where \(Q \) holds is one where \(Q_1 \) also holds
 – \{\{ P_1 \}\} S \{\{ Q_1 \}\}
Example Applications to Hoare Logic

\{{x \geq 0}\} y = x + 1; \{{y > 0}\}

• We know this is valid by the assignment rule

• Let P_1 be $x > 0$
 – stronger since $x \geq 0$ implies $x > 0$

• Let Q_1 be $y \geq 0$
 – weaker since $y \geq 0$ implies $y > 0$

• Thus, the following is also valid:

 \{{x > 0}\} y = x + 1; \{{y \geq 0}\}
Weakest preconditions

• Suppose we know \(Q \) and \(S \)
• There are potentially many \(P \) such that \(\{\{P\}\} \ \Rightarrow \{\{Q\}\} \) is valid

• Would be ideal if there were a unique weakest precondition \(P \)
 – most general assumptions under which \(S \) makes \(Q \) hold
 – get a valid triple for \(P_1 \) if and only if \(P_1 \) implies \(P \)

• Amazingly, without loops, for any \(S \) and \(Q \), this exists!
 – we denote this by \(\text{wp}(S,Q) \)
 – can be found by general rules

• Allows you to reason backward without any guessing
 – just as you do with forward reasoning
Rules for weakest preconditions

• \(\text{wp}(x = e, Q)\) is \(Q[x=e]\)
 – Example: \(\text{wp}(x = 2*y, x > 4) = 2*y > 4\), i.e., \(y > 2\)

• \(\text{wp}(S1;S2, Q)\) is \(\text{wp}(S1, \text{wp}(S2,Q))\)
 – i.e., let \(R\) be \(\text{wp}(S2,Q)\) and overall \(\text{wp}\) is \(\text{wp}(S1,R)\)
 – Example: \(\text{wp}(y = x+1, \text{wp}(z = y+1, z > 2)) = \text{wp}(y = x+1, y+1 > 2) = (x+1)+1 > 2\) or equivalently \(x > 0\)

• \(\text{wp}(\text{if } b \ S1 \text{ else } S2, Q)\) is this logic formula:
 \[(b \text{ and } \text{wp}(S1,Q)) \text{ or } (!b \text{ and } \text{wp}(S2,Q))\]
 – you need \(\text{wp}(S1,Q)\) if \(S1\) is executed and \(\text{wp}(S2,Q)\) if \(S2\) is
 – you can often simplify the result considerably
More Examples

• If S is $x = y \cdot y$ and Q is $x > 4$, then $wp(S, Q)$ is $y \cdot y > 4$, i.e., $|y| > 2$

• If S is $y = x + 1; z = y - 3$; and Q is $z = 10$, then $wp(S, Q)$...

 $= wp(y = x + 1; z = y - 3, z = 10)$
 $= wp(y = x + 1, wp(z = y - 3, z = 10))$
 $= wp(y = x + 1, y - 3 = 10)$
 $= wp(y = x + 1, y = 13)$
 $= x + 1 = 13$
 $= x = 12$
Bigger Example

\[S \text{ is if } (y < 5) \{ x = y*y; \} \text{ else } \{ x = y+1; \} \]

\[wp(S, x \geq 9) \]
\[= (y < 5 \text{ and } wp(x = y*y, x \geq 9)) \]
\[\quad \text{or } (y \geq 5 \text{ and } wp(x = y+1, x \geq 9)) \]
\[= (y < 5 \text{ and } y*y \geq 9) \]
\[\quad \text{or } (y \geq 5 \text{ and } y+1 \geq 9) \]
\[= (y \leq -3) \text{ or } (y \geq 3 \text{ and } y < 5) \]
\[\quad \text{or } (y \geq 8) \]
If-statements review

Forward reasoning

\{\{ P \}\}
if B
\{\{ P \text{ and } B \}\}
S1
\{\{ Q1 \}\}
else
\{\{ P \text{ and } \neg B \}\}
S2
\{\{ Q2 \}\}
\{\{ Q1 \text{ or } Q2 \}\}

Backward reasoning

\{\{ (B \text{ and } \wp(S1, Q)) \text{ or } (\neg B \text{ and } \wp(S2, Q)) \}\}
if B
\{\{ \wp(S1, Q) \}\}
S1
\{\{ Q \}\}
else
\{\{ \wp(S2, Q) \}\}
S2
\{\{ Q \}\}
\{\{ Q \}\}
One caveat

• With forward reasoning, there is a problem with assignment:
 – changing a variable can affect other assumptions

```c
{{ }}
w = x + y;
{{ w = x + y }}
x = 4;
{{ w = x + y and x = 4 }}
y = 3;
{{ w = x + y and x = 4 and y = 3 }}
```

• But clearly we do not know \(w = 7 \)!
• The assertion \(w = x + y \) means the original values of \(x \) and \(y \)
One Fix

• Use different names for the values at different points
 – common to use subscripts to distinguish these
 – on every assignment, rename references to the old values

```{w = x + y}
w = x + y;
{w = x + y}
x = 4;
{w = x₁ + y and x = 4}
y = 3;
{w = x₁ + y₁ and x = 4 and y = 3}```
Useful example: swap

• Consider code for a swapping \( x \) and \( y \)

\[
\begin{align*}
&\{ \{ \} \} \\
&\text{tmp} = x; \\
&\{\{ \text{tmp} = x \} \} \\
&x = y; \\
&\{\{ \text{tmp} = x_1 \text{ and } x = y \} \} \\
&y = \text{tmp}; \\
&\{\{ \text{tmp} = x_1 \text{ and } x = y_1 \text{ and } y = \text{tmp} \} \}
\end{align*}
\]

• Post condition implies \( x = y_1 \) and \( y = x_1 \)
• I.e., their final values are equal to the original values swapped