
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2017

Lecture 1 – Introduction & Overview
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)



What is the goal of CSE 331?

In short: to help you become better programmers

Specifically, to teach you how to write code of
• higher quality
• increased complexity

We will discuss tools and techniques to help with these

CSE 331 Fall 2017 2



What is high quality?

Code is high quality when it is

1. ​​​​​​​​Correct
– everything else is of secondary importance

2. Easy to change
– most work is making changes to existing systems

3. Easy to understand
– needed for 1 & 2 above

CSE 331 Fall 2017 3



How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. ​Tools
– e.g., type checking compiler

2. ​Inspection
– think through your code carefully
– have another person review your code

3. ​Testing
– usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%

CSE 331 Fall 2017 4



What is increased complexity?

Analogy to building physical objects:

• 100 well-tested LOC = a nice cabinet
• 2,500 LOC = a room with furniture
• 2,500,000 LOC = 1000 rooms ≈

CSE 331 Fall 2017 5

North Carolina class WW2 battleship



CSE 331 Fall 2017 6

≈
the entire British Naval fleet in WW2



Actually, software is more complex…

• Every bit of code is unique, individually designed
– US built 10 identical Essex carriers

– Software equivalent would be one carrier 10 times as large:

• Defects can be even more destructive
– a defect in one room can sink the ship
– but a defect OS could sink the whole fleet

• And more reasons we will see shortly…

CSE 331 Fall 2017 7



How do we cope with complexity?

We tackle complexity with modularity
• split code into pieces that can be built independently
• each must be documented so others can use it
• also helps understandability and changeability

In summary, we want our code to be:
1. correct
2. easy to change
3. easy to understand
4. easy to scale (modular)

CSE 331 Fall 2017 8



Scale makes everything harder

Modularity makes scale possible but it’s still hard…
• Time to write N-line program grows faster than linear

– good estimate is O(N1.05) [Boehm, ‘81]
• Bugs grow like Θ(N log N) [Jones, ‘12’]

– 10% are errors are btw modules [Seaman, ‘08]
– corner cases are more important with more users

• Comm. costs dominate schedules [Brooks, ‘75]

CSE 331 Fall 2017 9

Corollary: quality must be even higher, per line, in 
order to achieve overall quality in a large program



What we will cover in CSE 331

• Everything we cover relates to the 4 goals
• We’ll use Java but the principles apply in any setting

CSE 331 Fall 2017 10

Correctness
1. Tools

• Git, Eclipse, JUnit, Javadoc, …
• Java libraries: equality & hashing
• Adv. Java: generics, assertions, …
• debugging

2. Inspection
• reasoning about code
• specifications

3. Testing
• test design
• coverage

Modularity
• module design & design patterns
• event-driven programming, MVC, GUIs

Changeability
• specifications, ADTs
• listeners & callbacks

Understandability
• specifications, ADTs
• Adv. Java: exceptions
• subtypes



CSE 331 Fall 2017 11

Administrivia



Course staff
§ Lecturer

– Kevin Zatloukal (kevinz@cs, zat@uw)

§ TAs contact for...
– AA

• Bryan Van Draanen (bryanvd@cs) teaching
• Waylon Huang (waylonh@cs) grading

– AB
• Josh Katz (katzjm@cs) teaching
• Su Ye (yes23@cs) grading

– AC
• Belinda Li (lib49@cs) teaching
• Yiyang Xu (xu517@cs) grading

– Ruby Li (liz67@cs)
12CSE 331 Fall 2017



Office Hours

• My OOs: by appointment (send me email)
– usually available Mon & Fri

13CSE 331 Fall 2017

Day Time Location With
Monday 1:30 – 2:30pm CSE 006 Bryan
Tuesday 10:30 – 11:30am CSE 220 Josh

3:30 – 4:20pm CSE 006 Belinda
Wednesday 2:30 – 3:30pm CSE 006 Yiyang

3:30 – 4:20pm CSE 007 Ruby
Thursday 2:30 – 3:30pm CSE 021 Waylon

Friday 2:30 – 3:20pm CSE 006 Su



Staying in touch

• Course email list: cse331a_au17@u.washington.edu
– for class announcements
– students and staff already subscribed
– fairly low traffic

• Message Board
– for class discussion (staff will monitor and participate)
– help each other out and stay in touch outside of class

• Course staff: cse331-staff@cs.washington.edu 
– for things that don’t make sense to post on message board
– can also email your section TAs (earlier slide)

14CSE 331 Fall 2017



Prerequisites
Only prerequisite is Java knowledge

– we assume you have mastered CSE142 and CSE143

Examples
• Difference between int and Integer
• Basic java classes like Object, String, Number, Integer, Double
• Subtyping via extends (classes) and implements (interfaces)
• Difference between compile-time and run-time type
• Object-oriented dispatch with inheritance and overriding

15CSE 331 Fall 2017



Lecture and section

• Both are required

• All materials posted, but they are visual aids
– arrive punctually and pay attention
– if doing so doesn’t save you time, one of us is messing up (!)

• Section will often be more tools- and homework-focused

• Will post other handouts related to class material on web site
http://courses.cs.washington.edu/courses/cse331/

16CSE 331 Fall 2017



Homework

• Homework assignments will
1. give you more practice
2. require you to apply the techniques learned in class

• Pro Tip: think about which techniques are intended

• We will have 10 homework assignments
– first 3 are on paper, then all coding

17CSE 331 Fall 2017



Late Policy

• Late work will be penalized:
– 10% for 1 day (<= 24 hours)
– 20% for 2+ days (> 24 hours)

• Notify grader or cse331-staff if you need to use 2
– we will normally start grading after 24 hours

• Three (3) free late days
– for emergencies (life happens, we know that)

• Re-submission allowed for coding assignments, but...
– only for correctness points (not style, design, etc.)
– maximum score is 80% on correctness (since 2+ days late)
– intended for fixing minor mistakes that saw many lost points

18CSE 331 Fall 2017



Academic Integrity

"The code you write must be your own."

• Read the course policy carefully
– collaboration is encouraged, but…
– do not share your HW code with others

• When in doubt, document your collaboration in your HW
– at worst, you will lose a few points

• Cheating disrespects your colleagues and yourself

19CSE 331 Fall 2017



Books

Required textbooks
• Effective Java 2nd ed, Bloch (EJ)
• Pragmatic Programmer, Hunt & Thomas (PP)

Other useful books:
• Program Development in Java, Liskov & Guttag

– would be the textbook if not from 2001
• Core Java Vol I, Horstmann

– good reference on language & libraries

20CSE 331 Fall 2017



Books? In the 21st century?

• Why not just use Google, Stack Overflow, Reddit, Quora, …?

• Web articles can
– be out of date (without any indication this is so)

• even 2014 is like 1960 in Internet years
– rely on context that is not apparent on that page

• Books usually give better presentation of high level ideas
– the purpose of a language feature or library
– key reasons for its design

• Do use the Java 8 APIs (link on web site)

21CSE 331 Fall 2017



Readings & Quizzes

• We will have readings from the required textbooks
– these books are also on reserve at the library

• These are “real” books about software, approachable in 331 
– occasionally slight reach: accept the challenge

• Quizzes to make sure you don’t skip the readings
– short: 2-6 questions, usually multiple choice
– take as many times as you want

22CSE 331 Fall 2017



Exams

• Midterm in class on Friday, November 3rd

– main focus on reasoning, specifications, ADTs, & testing
– these are the most important topics in the class

• Final in class on Friday, August 18th

– comprehensive but first half most important

23CSE 331 Fall 2017



Grading

Approximate weighting (subject to change):

CSE 331 Fall 2017 24

55% Homework
5% Reading quizzes
15% Midterm exam
25% Final exam



Acknowledgments

• Course designed/created/evolved/edited by others
– Michael D. Ernst
– Dan Grossman
– David Notkin
– Hal Perkins
– Zach Tatlock (newcomer last quarter)
– A couple dozen amazing TAs

• Hoping my own perspective offers benefits

• [Because you are unlikely to care, I won’t carefully attribute 
authorship of course materials]

25CSE 331 Fall 2017



CSE 331 can be challenging

• Past experience tells us CSE 331 is hard
– not my intention to make it difficult!

• Big change to move
– from programming by brute-force, trial & error
– to programming by careful design, reasoning, and testing

• Assignments will take more time than you think (start early)
– even professionals routinely underestimate by 3x
– these assignments will be a step up in difficulty

• Learning to program well is worth the effort
– create solely with the power of your imagination
– create software that positively affects the lives of many people

26CSE 331 Fall 2017



CSE 331 Fall 2017 27

Questions?



You have homework!

• HW0, due in dropbox by 10:30am Friday
– write an algorithm to rearrange array elements as described
– argue in concise, convincing English that it is correct!
– should run in O(n) time

• (optional challenge: can you do it in a single pass?)
– do not actually run your code!

• Start learning to reason about the code you write
– this is the one homework that is intentionally difficult
– spend 2 hours max (if stuck after 90m, write up what you tried)

• this HW grade is for participation not results
– this will be easy in a week or so

28CSE 331 Fall 2017



To-Do List

Before the next class…

1. Familiarize yourself with website:

http://courses.cs.washington.edu/courses/cse331/ 

– read the syllabus (esp. the advice section)
– read the academic integrity policy
– find the homework list

2. Do HW0 by 10:30 am on Friday!
– limit this to 2 hours
– submit a PDF into the dropbox

29CSE 331 Fall 2017


