
 CSE 331 Midterm Exam 11/18/13

 Page 1 of 12

Name __

There are 13 questions worth a total of 100 points. Please budget your time so you get to

all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed mouth, open mind.

Many of the questions have short solutions, even if the question is somewhat long. Don’t

be alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s

output, make the best attempt you can. We will make allowances when grading.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 10

2. ______ / 16

3. ______ / 10

4. ______ / 10

5. ______ / 5

6. ______ / 14

7. ______ / 12

8. ______ / 5

9. ______ / 3

10. ______ / 6

11. ______ / 3

12. ______ / 5

13. ______ / 1

 CSE 331 Midterm Exam 11/18/13

 Page 2 of 12

Question 1. (10 points) (assertions) Using backwards reasoning, find the weakest

precondition for each sequence of statements and postcondition below. Insert appropriate

assertions in each blank line. You should simplify your final answers if possible.

(a)

 { __ }

 b = 3;

 { __ }

 a = a + 1;

 { a*b > b+1 }

(b)

 { __ }

 x = x * y;

 { __ }

 n = n - 1;

 { x * y
n
 = b } (y

n
 means y raised to the power n)

 CSE 331 Midterm Exam 11/18/13

 Page 3 of 12

Question 2. (16 points) Loop development. Implement the following method that

returns true if a list of Strings is sorted in non-decreasing order and false if not, and

prove that your implementation is correct. The method heading is provided for you. You

should use the compareTo method in Java code to determine the ordering of Strings

(but feel free to use ordinary notation like <= in the proof steps). You may declare any

additional simple variables needed, but no additional lists or other containers. The

method must not modify its argument.

You will need to provide a suitable loop invariant and other assertions, preconditions, and

postconditions to prove that your code is correct.

 // return true if the list elements are in non-decreasing

 // order (i.e., strs.get(0) <= strs.get(1) <= ...).

 boolean isSorted(ArrayList<String> strs) {

 }

 CSE 331 Midterm Exam 11/18/13

 Page 4 of 12

The next several questions concern the following partially implemented class, which

implements a Map (a set of <key,value> pairs) using a pair of lists to hold the keys and

values. Although the class is incomplete and the comments are not sufficient, the

methods shown here do work as intended.

You can remove this page for reference as you work on the next questions.

public class ExamMap<K,V> {

 // instance variables

 private List<K> keys;

 private List<V> values;

 // construct a new, empty ExamMap

 public ExamMap() {

 keys = new ArrayList<K>();

 values = new ArrayList<V>();

 }

 // add <key,value> to map

 public V put(K key, V value) {

 int loc = indexOf(key);

 if (loc != -1) {

 V result = values.get(loc);

 values.set(loc, value);

 return result;

 }

 keys.add(key);

 values.add(value);

 return null;

 }

 // return index of key-value pair with matching key

 // or -1 if not found

 private int indexOf(K key) {

 for (int i = 0; i < keys.size(); i++) {

 if (key.equals(keys.get(i))) {

 return i;

 }

 }

 return -1;

 }

 // return the keys stored in this ExamMap

 public List<K> getKeys() {

 return keys;

 }

}

 CSE 331 Midterm Exam 11/18/13

 Page 5 of 12

Question 3. (10 points) Give (i) a suitable class description, (ii) an abstraction function,

and (iii) a representation invariant for this class. The description should be a suitable

JavaDoc comment that would appear right above the “class ExamMap<k,v>” line at

the beginning of the code. The abstraction function and representation invariant should

contain the information we would expect to be included in comments right after the

declarations of instance variable keys and values.

 CSE 331 Midterm Exam 11/18/13

 Page 6 of 12

Question 4. (10 points) The put method adds a new <key,value> pair to the map. But

it is does not have a proper specification. Below write a suitable JavaDoc comment using

CSE331 conventions (@param, @requires, @modifies, etc.) to specify this method. The

existing implementation must, of course, satisfy the specification you give here.

Queston 5. (5 points) Are there any potential representation exposure problems in the

existing code? If so, what are they and how would you fix them while still providing

operations for existing client code?

 CSE 331 Midterm Exam 11/18/13

 Page 7 of 12

Question 6. (14 points) We would like to add a method to retrieve the value associated

with a key. The method heading is: public V get(K key) { ... } . Here are

four possible specifications for this method:

 /** SPEC A

 * @requires key is not null and key is a key in this

 * @return the value associated with key

 */

 /** SPEC B

 * @requires key is a key in this

 * @return the value associated with key

 * @throws NullPointerException if key is null

 */

 /** SPEC C

 * @return the value associated with key if key is a key in

 * this, or null if key is not associated with any value

 */

 /** SPEC D

 * @return the value associated with key

 * @throws NullPointerException if key is null

 * @throws NoSuchElementException if key is not a key in this

 */

And here are some possible implementations:

 // Implementation 1:

 public V get(K key) {

 return values.get(indexOf(key));

 }

 // Implementation 2:

 public V get(K key) {

 if (key==null) {

 throw new NullPointerException("null key passed to get");

 }

 return values.get(indexOf(key));

 }

 // Implementation 3:

 public V get(K key) {

 if (key == null || indexOf(key) == -1) {

 return null;

 }

 return values.get(indexOf(key));

 }

(continued next page – you may remove this page while you work if it is convenient.)

 CSE 331 Midterm Exam 11/18/13

 Page 8 of 12

Question 6. (cont.)

 // Implementation 4:

 public V get(K key) {

 if (key == null) {

 throw new NullPointerException("null key passed to get");

 }

 if (indexOf(key) == -1) {

 throw new NoSuchElementException("key not found");

 }

 return values.get(indexOf(key));

 }

(a) (6 points) Compare specifications. For each of the following pairs of specifications,

circle the letter of the specification that is stronger. Circle “neither” if the specifications

are either equivalent or incomparable, or if a specification contains an error or

inconsistency.

(i) A B neither

(ii) A C neither

(iii) A D neither

(iv) B C neither

(v) B D neither

(vi) C D neither

(b) (8 points) Implementations and specifications. In the following table, place an X in

the square if the implementation whose number is given to the left satisfies the

specification whose letter is given at the top. Leave the entry blank if the implementation

does not satisfy the specification or if a specification contains an error or inconsistency.

 Spec. A Spec. B Spec.C Spec. D

Impl. 1

Impl. 2

Impl. 3

Impl. 4

 CSE 331 Midterm Exam 11/18/13

 Page 9 of 12

Question 7. (12 points) Testing. We would like to test the put method that adds new

<key,value> pairs to the ExamMap. (This is the method whose specification comment

you provided in a previous question.)

(a) Describe two good black box (i.e., specification) tests for this method. The two tests

should be from different revealing subdomains – i.e., they should not detect exactly the

same set of errors. You do not need to give JUnit code – just describe the tests. You may

assume that the get method is available if that is useful.

(i)

(ii)

(b) Describe two good white box (or glass box) tests for this method. As with the black

box tests, the two tests should be from different revealing subdomains. Again, no JUnit

code required, and you may assume the get method is available.

(i)

(ii)

 CSE 331 Midterm Exam 11/18/13

 Page 10 of 12

Question 8. (5 points) Finally, we would like to add a suitable hashCode method to

our ExamMap class. For this question, assume that we have defined a suitable equals

method for ExamMap. Two ExamMaps are considered to be equal if they contain the

same sets of <key,value> pairs. If we have two <key,value> pairs <k1,v1> and

<k2,v2>, they are equal (i.e., the same) if k1.equals(k2) and v1.equals(v2).

Here is our proposed implementation of hashCode:

 public int hashCode() {

 int result = 0;

 for (int i = 0; i < keys.size(); i++) {

 result += 37*i*keys.get(i).hashCode() +

 31*i*values.get(i).hashCode();

 }

 return result;

 }

Is this a correct hashCode implementation for ExamMap, given the definition of

equality for ExamMaps described above? If so, is it a good implementation, and why?

If not, what is wrong with it?

 CSE 331 Midterm Exam 11/18/13

 Page 11 of 12

A few short answer questions…

(Meaning, please keep your answers short and to the point. A couple of sentences should

be enough most of the time.)

Question 9. (3 points) One of the principles that the Pragmatic Programmer emphasizes

is DRY. What does it stand for and what is the significance?

Question 10. (6 points) (a) Give one advantage of defining a type with a Java interface

instead of an abstract class.

(b) Give one advantage of defining a type with an abstract class instead of a Java

interface.

 CSE 331 Midterm Exam 11/18/13

 Page 12 of 12

Question 11. (3 points) When and where should you use the @override annotation in

a program? What is the reason for using it?

Question 12. (5 points) Circle true or false for each of the following.

true false The implementation of equals() in class Object is equivalent to ==.

true false If A is a Java subclass of B, then A.getClass().equals(B.getClass()) is true.

true false If A is a Java subclass of B, then A instanceof B is true.

true false The method isEmpty() in the Java Collections interface is an

 “observer” method.

true false The method clear() in the Java Collections interface is a “creator”

 method.

Question 13. (1 point – all honest answers receive the point) What is the one question (if

any) that you really thought would be on this test that we forgot to include??

