
Justin Bare and Deric Pang

wi th mater i a l f rom Er in Peach, Nick Carney, Vinod
Rathnam, Alex Mar i akaki s , Krys t a Yousouf i an, Mike
Erns t , Kel l en Donohue

Section 4:
Graphs and Testing

AGENDA

✕Graphs
✕ JUnit Testing
✕Test Script Language
✕ JavaDoc

GRAPHS

A B

C D

E

Nodes and
Edges

GRAPHS

A B

C D

E

Children of A

GRAPHS

A B

C D

E

Parents of D

GRAPHS

A B

C D

E

Paths from
A to C:

GRAPHS

A B

C D

E

Paths from
A to C:

A -> C

A -> D -> E -> C

Shortest path
from A to C?

Testing

INTERNAL VS. EXTERNAL
TESTING

✕ Internal : JUnit
+ How you decide to implement the object
+ Checked with implementation tests

✕External: test script
+ Your API and specifications
+ Testing against the specification
+ Checked with specification tests

A JUNIT TEST CLASS

✕ A method with @Test is flagged as a JUnit test
✕ All @Testmethods run when JUnit runs

import org.junit.*;
import static org.junit.Assert.*;

public class TestSuite {
...

@Test
public void TestName1() {

...
}

}

USING JUNIT ASSERTIONS

✕Verifies that a value matches expectations
✕ assertEquals(42, meaningOfLife());
✕ assertTrue(list.isEmpty());

✕ If the assert fails:
+ Test immediately terminates
+ Other tests in the test class are still run as normal
+ Results show “details” of failed tests (We’ll get to this later)

USING JUNIT ASSERTIONS

Assertion Case for failure
assertTrue(test) the boolean test is false
assertFalse(test) the boolean test is true
assertEquals(expected, actual) the values are not equal
assertSame(expected, actual) the values are not the same (by ==)
assertNotSame(expected, actual) the values are the same (by ==)
assertNull(value) the given value is not null
assertNotNull(value) the given value is null

• And others: http://www.junit.org/apidocs/org/junit/Assert.html

• Each method can also be passed a string to display if it fails:
• assertEquals("message", expected, actual)

CHECKING FOR EXCEPTIONS

✕ Verify that a method throws an exception
when it should:
✕ Passes if specified exception is thrown, fails

otherwise
✕ Only time it’s OK to write a test without a

form of asserts
@Test(expected=IndexOutOfBoundsException.class)
public void testGetEmptyList() {

List<String> list = new ArrayList<String>();
list.get(0);

}

“But don’t I need to create a list before
checking if I’ve successfully added to
it?”

SETUP AND TEARDOWN

✕ Methods to run before/after each test case method is called:
@Before
public void name() { ... }
@After
public void name() { ... }

✕ Methods to run once before/after the entire test class runs:
@BeforeClass
public static void name() { ... }
@AfterClass
public static void name() { ... }

SETUP AND TEARDOWN

public class Example {
List empty;

@Before
public void initialize() {

empty = new ArrayList();
}
@Test
public void size() {

...
}
@Test
public void remove() {

...
}

}

Test	Writing	Etiquette

The	Rules
1.	Don’t	Repeat	Yourself
◦ Use	constants	and	helper	methods
2.	Be	Descriptive
◦ Take	advantage	of	message,	expected,	and	actual
values

3.	Keep	Tests	Small
◦ Isolate	bugs	one	at	a	time	– Test	halts	after	failed	
assertion

4.	Be	Thorough
◦ Test	big,	small,	boundaries,	exceptions,	errors

LET’S PUT IT ALL TOGETHER!

public class DateTest {

...

// Test addDays when it causes a rollover between months

@Test

public void testAddDaysWrapToNextMonth() {

Date actual = new Date(2050, 2, 15);

actual.addDays(14);

Date expected = new Date(2050, 3, 1);

assertEquals("date after +14 days", expected,
actual);

}

How To Create JUnit Test Classes

✕ Right-click	hw5.test	->	New	->	JUnit	Test	Case

✕ Important:	Follow	naming	guidelines	we	provide

✕ Demo

JUNIT ASSERTS VS. JAVA ASSERTS

✕We’ve just been discussing JUnit assertions so
far

✕ Java itself has assertions

public class LitterBox {
ArrayList<Kitten> kittens;

public Kitten getKitten(int n) {
assert(n >= 0);
return kittens(n);

}
}

ASSERTIONS VS. EXCEPTIONS

✕ Assertions should check for things that should never
happen

✕ Exceptions should check for things that might happen
✕ “Exceptions address the robustness of your code,

while assertions address its correctness”

public class LitterBox {
ArrayList<Kitten> kittens;

public Kitten getKitten(int n) {
assert(n >= 0);
return kittens(n);

}
}

public class LitterBox {
ArrayList<Kitten> kittens;

public Kitten getKitten(int n) {
try {

return kittens(n);
} catch(Exception e) {
}

}
}

REMINDER: ENABLING ASSERTS
IN ECLIPSE

To enable asserts:
Go to Run -> Run Configurations… -> Arguments
tab -> input -ea in VM arguments section

Do this for every test file

Expensive CheckReps

✕Ant	Validate	and	Staff	Grading	will	have	assertions	
enabled

✕But	sometimes	a	checkRep can	be	expensive
✕For	example,	looking	at	each	node	in	a	Graph	with	a	

large	number	of	nodes

✕This	could	cause	the	grading	scripts	to	timeout

Expensive CheckReps

✕ Before	your	final	commit,	remove	the	checking	of	expensive	parts	of	
your	checkRep or	the	checking	of	your	checkRep entirely

✕ Example:	boolean flag	and	structure	your	checkRep as	so:

private	void	checkRep()	{
cheap-stuff
if(DEBUG_FLAG)	{	//	or	can	have	this	for	entire	checkRep
expensive-stuff
}
cheap-stuff
...

EXTERNAL TESTS:
TEST SCRIPT LANGUAGE

TEST SCRIPT LANGUAGE

✕Text file with one command listed per line
✕First word is always the command name
✕Remaining words are arguments
✕Commands will correspond to methods in

your code

TEST SCRIPT LANGUAGE (ex .test
file)

Create a graph
CreateGraph graph1

Add a pair of nodes
AddNode graph1 n1
AddNode graph1 n2

Add an edge
AddEdge graph1 n1 n2 e1

Print the nodes in the graph
and the outgoing edges from n1
ListNodes graph1
ListChildren graph1 n1

n1 n2

How To Create Specification Tests

✕ Create	.test	and	.expected	file	pairs	under	hw5.test

✕ Implement	parts	of	HW5TestDriver
+ driver	connects	commands	from	.test	file		to	your	Graph	

implementation	to	the	output	which	is	matched	with	
.expected	file

✕ Run	all	tests	by	running	SpecificationTests.java
+ Note:	staff	will	have	our	own	.test	and	.expected	pairs	to	run	

with	your	code
+ Do	not hardcode	.test/.expected	pairs	to	pass,	but	instead	

make	sure	the	format	in	hw5	instructions	is	correctly	
followed

DEMO: TEST SCRIPT LANGUAGE

JAVADOC API

✕Now you can generate the JavaDoc API
for your code

✕ Instructions in the Editing/Compiling
Handout

✕Demo: Generate JavaDocs

