
Zach Tatlock / Winter 2016

CSE 331
Software Design and Implementation

Lecture 24
Wrap Up

Today

• Reminder: course evals

• Project demos

• Final-exam information

• A look back at CSE 331
– High-level overview of main ideas and goals
– Connection to homeworks
– Context

• Also:
– Thank-yous

Final-exam information

Monday, 8:30-10:20 AM

Comprehensive but weighted towards the 2nd half of the course

Old exams on the web
– Some questions won’t apply if we didn’t do similar things

CSE 331

What was it all about?

But first….

Huge thanks to the folks who made it work

Course staff: Vinod, Chris, Justin, Deric, Cindy

Special thanks to all of you for lots of good test questions :)

This course is itself a sophisticated system
requiring design, implementation, and debugging ;)

Credits

Great course material based on work by:

– Michael Ernst

– Hal Perkins

– Dan Grossman

– David Notkin

– Dozens of amazing TAs

– Hundreds of incredible students (you!)

From our first lecture…

10 weeks ago: Welcome!
We have 10 weeks to move well beyond novice programmer:

Larger programs
– Small programs are easy: “code it up”
– Complexity changes everything: “design an artifact”
– Analogy: using hammers and saws vs. making cabinets (but

not yet building houses)

Principled, systematic software: What does “it’s right” mean? How
do we know “it’s right”? What are best practices for “getting it
right”?

Effective use of languages and tools: Java, IDEs, debuggers, JUnit,
JavaDoc, git, Checker Framework, …

– Principles are ultimately more important than details
• You will forever learn details of new tools/versions

10 weeks ago: Goals

CSE 331 will teach you to how to write correct programs

What does it mean for a program to be correct?
– Specifications

What are ways to achieve correctness?
– Principled design and development
– Abstraction and modularity
– Documentation

What are ways to verify correctness?
– Testing
– Reasoning and verification

10 weeks ago: Managing complexity
Abstraction and specification

– Procedural, data, and control flow abstractions
– Why they are useful and how to use them

Writing, understanding, and reasoning about code
– Will use Java, but the issues apply in all languages
– Some focus on object-oriented programming

Program design and documentation
– What makes a design good or bad (example: modularity)
– Design processes and tools

Pragmatic considerations
– Testing
– Debugging and defensive programming
– [more in CSE403: Managing software projects]

Some new slides to tie the pieces together…

Divide and conquer:
Modularity, abstraction, specs

No one person can understand all of a realistic system

• Modularity permits focusing on just one part

• Abstraction enables ignoring detail

• Specifications (and documentation) formally describe behavior

• Reasoning relies on all three to understand/fix errors
– Or avoid them in the first place
– Proving, testing, debugging: all are intellectually challenging

How CSE 331 fits together

Lectures: ideas

Specifications
Testing
Subtyping
Equality & identity
Generics
Design patterns
Reasoning, debugging
Events
Systems integration

⇒ Assignments: get practice

⇒ Design classes
⇒ Write tests
⇒ Write subclasses
⇒ Override equals, use collections
⇒ Write generic classes
⇒ Larger designs; MVC
⇒ Correctness, testing
⇒ GUIs
⇒ N/A

We’ve come far in CSE 331!
Compare your skills today to 10 weeks ago

– Theory: abstraction, specification, design
– Practice: implementation, testing
– Theory & practice: correctness

Bottom line aspiration: Much of what we’ve done would be
easy for you today

This is a measure of how much you have learned

There is no such thing as a “born” programmer!

Genius is 1% inspiration and 99% perspiration.
Thomas A. Edison

What you will learn later
• Your next project can be much more ambitious

– But beware of “second system” effect

• Know your limits
– Be humble (reality helps you with this)

• You will continue to learn
– Building interesting systems is never easy

• Like any worthwhile endeavor
– Practice is a good teacher

• Requires thoughtful introspection
• Don’t learn only by trial and error!

– Voraciously consume ideas and tools

What comes next?

Courses
– CSE 403 Software Engineering

• Focuses on requirements, software lifecycle, teamwork
– Capstone projects
– Any class that requires software design and implementation

Research
– In software engineering & programming systems
– In any topic that involves software

Having an impact on the world
– Jobs (and job interviews)
– Larger programming projects

Final slide

System building is fun!
– It’s even more fun when you’re successful

Pay attention to what matters
– Take advantage of the techniques and tools you’ve learned

(and will learn!)

On a personal note:
– Don’t be a stranger: I love to hear how you do in CSE and

beyond as alumni

Closing thoughts?

