- Securing Systems
via Design and Proof

SRR

L

-
-
.

RRRE 2222 0]

7.

- - -
» - ;
o - W O
. - -
‘e . - . . ¥
M . 2 >
- - - o T s
. . 57
. - = sh881 800 soelissssanet ! 2
HH HH . - TTTE RN LAV L . G
L4 e E "o % Y] o _REL - Ly g o
" . - - ")* t
o " ! LI ¢ "
w o " e R A "
' ' > = o, Lt
" : : IR L kLT
i e ERA Es i
L 3 .) . .
3

i'f

‘I

ﬁ, \w - :
!
W

) SO e [|
C R e — . - = " .
: - - N

e

SETTTYY. i

&

“.

- l
) by .

.‘i-
&) A g ey T O =
i VL TR T AT I e T o . } \ \ \ \\' \ ﬁ
: A

‘I86\ -

Software Infrastructure

-

HA ""' !

oftware Infrastructure is Shaky

Che New dork Cimes

Cars’ Computer Systems Called at Risk to Hackers

By JONN MARKOFF
Published May 14, 2010

Automobiles, which will be increasingly c¢
the near future, could be vulnerable to hac
now, two teams of computer scientists are
presented next week.

The scient!
Connect With

* to remot
Us on Social : ely
Media functions, '
@nytimessaence on - 4
Twitter. Science Bkl
+ Science Reporters and Editors on security m
Twitter

“We demc
Like the science desk on Facebook y

adversaria

automotiv

including disabling the brakes, selectively
the engine, and so on,” they wrote in the n
Modern Automobile,”

In the paper, which will be presented at ¢,
Oakland, Calif., computer security specia |
University of California, San Diego, repo; '
engineering in the design of their compu
to the potential threat of hackers who mi

P

U.S. Food and Drug #
=TD)/A\

Protecting and Promoting

Medical Devices

© Home © Medical Devices © Medical Device Saft

List of Device

» Medical Device Recalls

2012 Medical Device
Recalls

2011 Medical Device
Recalls

2010 Medical Device
Recalls

2009 Medical Device
Recalls

2008 Medical Device
Recalls

2007 Madical Device
Recalls

2006 Medical Device
Recalls

2001 - 2008 Medical Device
Recalls

FDA posts consumer
™0 list because here

Recent Medi

Listed by date pose

Device Nam

Vascular So
Valves, Mod

Spacelabs k
Service Kits

Symbios Me
PumpKit, Pa

Ad-Tech Mer
Electrodes

Lumenis Lin,
DePuy Orthe

BloombergBusinessweek

Markets & Finance

Software Bug Made Swedish
Exchange Go Bork, Bork, Bork

By Karen Wese on November 29, 2012

A computer error stalks the markets—again. An order on a relatively obscure
derivatives index in Stockholm yesterday was asking to buy futures contracts on
Swedish stocks valued at 131 times the country’s entire GDP. The order made the
exchange go “bananas” and caused Nasdaq OMX to stop trading in Swedish
derivatives for four hours.

This was no “fat finger” incident, where a trader accidentally types an extra few
digits or the wrong numbers in an order. Instead, a software glitch magnified an
order, Nasdaq OMX spokesman Carl Norell told Bloomberg News. “Our system
misinterpreted a certain order category and communicated a value that was way
too high into the book,” he said.

The interruption was in a small corner of the market, but it's just the latest ina
string of technical problems that have halted trading. As more trading is driven
by the algorithms of high-frequency traders, one glitch or bad order can spark
major disruptions. The 2010 flash crash caused $862 billion in stock values to
vanich f~~m the market temporarily, and technical nrohla~-"’ ~tad ok~

GE Hoalthcare, LK - : Vrd
Systems, and the € nd Panda Bag and Mask Resuscitation

Systems

St Jude Medical, AMPLATZER TorgVue FX Delivery System 02M2M3
Hamiton Medical, Inc., HAMILTON-T1 Ventilators with Software 020713

Versions 1.1.2 and Lower

Vycor Medical, Inc., Vycor Viewsite Brain Access System (VBAS) 013013

Bausch and Lomb 276G Sterlle Cannula Packed in Bauschand Lomb 01/2313
Amvisc 1.2% Sodium Hyaluronate (Model 59051, 58081, 590511,
S9081L) and Amvisc Plus 1.6% Sodium Mwghyes~—= " @ " a=aRe

Software Infrastructure is Shaky

Software Infrastructure is Shaky

When exhaustive testing is impossible,
our trust can only be based on proof.

Edsger W. Dijkstra
Under the Spell of Leibniz's Dream

Reports and Articles

Social Processes and Proofs of Theorems
‘and Programs |

 Georgia mstuute of Technology | Proofs won’t happen

- Richard J. Lipton and Alan J. Perlis r
- Yale University

4
\ :

h " . . 1 -\;: '

5" L g 408 = t‘
AT S e
A SRS M N

S

ad Do
X &

&'-‘r: L

... hot just a dream!

Proof Assistant Based Verification

Code in language suited for reasoning

Develop correctness proof in synch

Fully formal, machine checkable proof

Proof Assistant Based Verification

Verified Compiler: CompCert [teroy PorL 0¢]

Combpiler Bugs Found
GCC 122
LLVM |81
CompCert ?

[Yang et al. PLDI 117]

Proof Assistant Based Verification

Verified Compiler: CompCert [teroy PorL 0¢]

Combpiler Bugs Found
GCC 122
LLVM |81
CompCert

[Yang et al. PLDI 11]
[Vu et al. PLDI 14]

Verified OS kernel: selL4 («ein et a1 s05p 09)
realistic implementation guaranteed bug free

Proof Assistant Based Verification

Verified Compiler:

Compiler Bugs Found

—, NO prog

€rrors

Verified OS kernel:

realistic implementation guaranteed bug free

Promise

U

no prog
errors

Promise

Proof

U

no prog
errors

Promise

Proof

U

no prog
errors

Promise

Proof

|

no prog
errors

The Burden of Proof

| Initial proofs require heroic effort

CompCert: 70% proof, vast majority of effort
selL4: 200,000 line proof for 9,000 lines of C

2. Code updates require re-proving

CompCert: adding opts [Tristan POPL 08, PLDI 09, POPL 0]

selL4: changing RPC took | 7% of proof effort

Mitigating the Burden of Proof

|: Scaling proofs to critical infrastructure

—=> Formal shim verification for large apps

QUARK: browser with security guarantees

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Fully Formal Verification

Fully Formal Verification

Coq Theorem Prover
Proof

Assistant

Fully Formal Verification

Code \

in language

Proof

Assistant

suited to
reasoning

Fully Formal Verification

Code \
Spec /

Proof

Assistant

logical properties
characterizing correctness

Fully Formal Verification

Code \
Spec /

Proof

Assistant

interactively show
code satisfies
specification

Fully Formal Verification

Code \
Spec /

Proof
Assistant

ML |—| x86

compile down to

machine code

Fully Formal Verification

Code \

Proof ML |—>| x86
Assistant
Spec /
I Extremely strong

guarantees about
actual system!
:

Fully Formal Verification

 ann) -

emacs@gear-ubuntu-32

File Edit Options Buffers Tools Coq Proof-General Holes Help

Fully Formal Verification

Voo .

emacs@gear-ubuntu-32

File Edit Options Buffers Tools Coq Proof-General

program in a purely
functional language

Fixpoint factorial n :
match n with
| 0 =1
| S m=>n * factorial m
end.

Fully Formal Verification

S~~~ .

emacs@gear-ubuntu-32

File Edit Options Buffers Tools Coq Proof-General Holes Help

Fixpoint factorial n :
match n with

specification

| 0 =1) .
I S m=n *¥ factorial m C araCterlzeS
end. desired behavior

Definition monotonic T :=
forall a b,

a<=b ->

f a<=1Db.

Fully Formal Verification

 ann) -

emacs@gear-ubuntu-32

File Edit Options Buffers Tools Coq Proof-General Holes Help

Fixpoint factorial n :
match n with

| 0 =1
| S m=>n * factorial m
end.

Definition monotonic T :=
forall a b,

a<=b ->

f a<=1Db.

claim program

satisfies spec
Theorem example :

monotonic factorial.
Proof.

construct proof
interactively

Fully Formal Verification

—_—

emacs@gear-ubuntu-32

File Edit Options Buffers Tools Coq Proof-General Holes Help
»Fixpoint factorial n :=
match n with

| 0 =1
| Sm=>n * factorial m
end.

Definition monotonic f :=
forall a b,
a<=b ->
fa<=fDh.

Theorem example :
monotonic factorial.
Proof.
unfold monotonic. intros nl n2 H.
induction H. apply le refl. simpl.
apply le trans with (m := factorial m); auto.
destruct (mult O le (factorial m) m).
rewrite HO; simpl. apply le refl.
apply le trans with (m := m * factorial m); auto.
rewrite plus n 0 at 1. rewrite plus comm.

apply plus le compat. apply le 0 n. apply le refl.
Qed.

Fully Formal Verification

LY v

emacs@gear-ubuntu-32

browsers don’t
look like factorial

File Edit Options Buffers Tools Coq Proof-Generé
»Fixpoint factorial n :=
match n with
| 0 =1
| Sm=>n * factorial m
end.

Definition monotonic f :=
forall a b,
a<=b->
fa< T0Db.

browsers don'’t
have simple specs

Theorem example :
monotonic factorial.

Proof.
unfold monotonic. intros nl n2 H.
induction H. apply le refl. simpl.
apply le trans with (m := factorial
destruct (mult 0 le (factorial m
rewrite HO; simpl. apply le T¢
apply le trans with (m := m * facto
rewrite plus n 0 at 1. rewrite plus

apply plus le compat. apply le 0 n. %
Qed.

even easy proofs grow quickly
and become opaque

Fully Formal Verification

Scrap existing code, rewrite

Invest decades of person-years

Intractable for large-scale apps

Formally Verify a Browser?!

Formally Verify a Browser?!

Millions of LOC

Web
Browser

Formally Verify a Browser?!

Millions of LOC

High performance

JavaScript

Formally Verify a Browser?!

Resources

Millions of LOC
High performance
JavaScript |
|:||:|—|:|_|j Loose access policy
100
OOCaLree
[
HTML | O
L]

Formally Verify a Browser?!

Resources

JavaScript

[

L] [
101

JPEG

0]

[]

([]

Millions of LOC
High performance
Loose access policy

Constant evolution

Formally Verify a Browser?!

Resources
Isolate

sandbox untrusted code

JavaScript

Formally Verify a Browser?!

Resources
Isolate

sandbox untrusted code

Shim

Implement shim
guards resource access

JavaScript

Formally Verify a Browser?!

Resources

Shim

JavaScript

Isolate
sandbox untrusted code

Implement shim
guards resource access

Verify shim

brove security policy

Formal Shim Verification

Resources
Isolate

sandbox untrusted code

Shim

Implement shim
guards resource access

JavaScript

Verify shim

brove security policy

Formal Shim Verification

Resources Isolate

Implement shim

Shim Verify shim

Sandbox

Applies when:

l. sys fits architecture
Untrusted

Code

2. policy over resources

browser, httpd, sshd, ...

Formal Shim Verification

Key Insight: Focus Effort

Guarantee sec props for entire system
Only implement and prove small shim
Radically ease verification burden

Prove actual code correct

Mitigating the Burden of Proof

|: Scaling proofs to critical infrastructure

—=> Formal shim verification for large apps

QUARK: browser with security guarantees

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Mitigating the Burden of Proof

|: Scaling proofs to critical infrastructure

Formal shim verification for large apps

—> QUARK: browser with security guarantees

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Browsers: Critical Infrastructure

Browsers: Vulnerable

Pwn20wn hacking contest puts record D efe NSes / PO I | C | es.:
$560K on the line ’

Google back as ¢ nsor after nizer changes rules
o [Jang et al. W2SP]
GELEE e e [Stamm et al. WWW]

Computerworid - HP TippingPoint, the long-time organizer of the annual
Pwn20wn hacking contest, has revamped the challenge for the second year

running and will offer cash awards exceeding half a million dollars, more than S

five times the amount paid out last year, the company said yesterday. [laCkson et al- WZ P]
The 2013 edition of the contest will offer $560,000 in potential prize money

to hackers who demonstrate exploits of previously-unknown vulnerabilities

in Chrome, Firefox, Internet Explorer (IE) or Safari, or the Adobe Reader, [BG r th et g I CC S]

Adobe Flash or Oracle Java browser plug-ins.

Prizes will be awarded on a sliding schedule, with $100,000 for the first to .

hack Chrome on Windows 7 or IE10 on Windows 8. From there, payments [Slng‘h et al. OAKLA ND]
will fall to $75,000 for IES and slide through a number of targets before

ending at $20,000 for Java. Prizes will also be given for exploiting Adobe

Flash and Adobe Reader ($70,000 each), Safari ($65,000) and Firefox

($60,000). eo o

About the Java award, Kostya Kortchinsky, a researcher who now works
for Microsoft, quickly tweeted, "ZDI giving out $20k for free," referring to the

Oracle softw.aro's recent vulnerabilities. | | C O m P I e X +
Implementation Bugs

Vancauver. Rritish Columbia.

Quark:Verified Browser

Resources

Shim

Sandbox

Untrusted

Code

Quark:Verified Browser

Resources

Quark:Verified Browser

@Tim

Resources

network

persistent storage

user interface

Quark:Verified Browser

Shim

Quark:Verified Browser

Shim
Quark browser kernel

Quark Kernel code, spec, proof in Coq

Quark:Verified Browser

Sandbox

Untrusted

Code

Quark:Verified Browser

Untrusted Code

browser components

Sandbox run as separate procs

Untrusted strictly sandboxed

Code

Quark:Verified Browser

Untrusted Code

browser components

Sandbox run as separate procs

strictly sandboxed

Untrusted

Code talk to kernel over pipe

Quark:Verified Browser

Untrusted Code

two component types

Sandbox

Untrusted

Code

Quark:Verified Browser

Untrusted Code

two component types

modified WebKit,
Tab intercept accesses

Quark:Verified Browser

Untrusted Code

two component types

Quark:Verified Browser

Untrusted Code

two component types

written in Python,
Cookie manages single domain
Manager

Quark:Verified Browser

@Tim

Quark Kernel two component types

f i WebKit tabs
WebKit Cookie cookie managers
Tab Manager

Resources
Shim
Untrusted Code

Quark:Verified Browser

@Tim

Quark Kernel two component types

f i WebKit tabs

Resources
Shim
Untrusted Code

cookie managers

Cookie
Manager

several instances each

Quark:Verified Browser

Quark:Verified Browser

Quark Kernel

Quark Kernel

Quark Kernel

Quark Kernel: Code, Spec, Proof

Quark Kernel

Quark Kernel: , Spec, Proof

Quark Kernel

Quark Kernel: , Spec, Proof

Quark Kernel: , Spec, Proof

Definition kstep ...

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=

kernel state

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);

Unix-style select to

find a component
pipe ready to read

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);

match £ with

| Stdin => case: £ is user input
Tab t => : :

| Ta case: £ is tab pipe

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>

cmd <- read cmd(stdin);

read command from

user over stdin

| Tab t =>

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);
match cmd with
| AddTab =>

user wants to create

| and focus a new tab
| Tab t =>

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);
match cmd with
| AddTab =>

t <- mk tab();

create a hew tab

| Tab t =>

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);
match cmd with
| AddTab =>
t <- mk tab();
write msg(t, Render);

tell new tab to

| Tab t => .
render itself

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);
match cmd with
| AddTab =>
t <- mk tab();
write msg(t, Render);
return (t, t::tabs)

return updated state

| Tab t =>

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);
match cmd with
| AddTab =>
t <- mk tab();
write msg(t, Render);
return (t, t::tabs)

| Tab t =>

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);
match cmd with
| AddTab =>
t <- mk tab();
write msg(t, Render);
return (t, t::tabs)

handle other

| Tab t =>
user commands

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);
match cmd with
| AddTab =>

t <- mk tab();

handle requests

| Tab t from tabs

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);
match cmd with
| AddTab =>
t <- mk tab();
write msg(t, Render);
return (t, t::tabs)

| Tab t =>

Quark Kernel: , Spec, Proof

Quark Kernel: Code, , Proof

Quark Kernel: Code, , Proof

Safety properties to mitigate attacks

restrict kernel behavior to only safe executions

Example: mitigate phishing attacks
brevent tricks that get users to divulge secrets

. | aCood Technology
seems legit “
| good.com

M | By

Quark Kernel: Code, , Proof

Safety properties to mitigate attacks

restrict kernel behavior to only safe executions

Example: mitigate phishing attacks
brevent tricks that get users to divulge secrets

] good.com

O C 1 Evil.Com
spoofed! || "N_ f Do
= » evil.com

L r'—""C.ood Technology

Quark Kernel: Code, , Proof

Specify correct behavior wrt syscall segs

read(), write(), open(), write(), ...

Quark Kernel: Code, , Proof

Specify correct behavior wrt syscall segs

trace: all syscalls made
by Quark kernel
during execution

Quark Kernel: Code, , Proof

Specify correct behavior wrt syscall segs

Quark Kernel: Code, , Proof

Specify correct behavior wrt syscall segs

A | N | N |

structure of produceable traces supports spec & proof

Quark Kernel: Code, , Proof

Example: address bar correctness

Quark Kernel: Code, , Proof

Example: address bar correctness

forall trace tab domain,

for any trace, tab,
and domain

Quark Kernel: Code, , Proof

Example: address bar correctness

forall trace tab domain,

quark produced (trace) N\

if Quark could have
produced this trace

Quark Kernel: Code, , Proof

Example: address bar correctness

forall trace tab domain,

quark produced (trace) N\
tab = cur tab(trace) N\

and tab is the selected
tab in this trace

Quark Kernel: Code, , Proof

Example: address bar correctness

forall trace ti and domain displayed in
quark producd address bar for this trace
tab = cur tg.

domain = addr bar (trace) ->

Quark Kernel: Code, , Proof

Example: address bar correctness

forall trace tab dq then domain is the

quark_produced(tn domain of the

tab = cur_ tab(trs focused tab
addr ba

tab domain (tab)

domain

domain

Quark Kernel: Code,

. Proof

Example: address bar correctness

forall trace tab domain,

quark produced (trace) N\
tab = cur tab(trace) N\
domain = addr bar (trace) ->

domain

tab domain (tab)

Quark Kernel: Code, , Proof

Formal Security Properties

Tab Non-Interference
no tab daffects kernel interaction with another tab

Cookie Confidentiality and Integrity
cookies only accessed by tabs of same domain

Address Bar Integrity and Correctness
address bar accurate, only modified by user action

Quark Kernel: Code, , Proof

Quark Kernel: Code, Spec,

Quark Kernel: Code, Spec,

Prove kernel code satisfies sec props

by induction on traces Quark can produce

Quark Kernel: Code, Spec,

Prove kernel code satisfies sec props

by induction on traces Quark can produce

]

induction hypothesis:
trace valid up to this point

Quark Kernel: Code, Spec,

Prove kernel code satisfies sec props

by induction on traces Quark can produce

L L2]

induction hypothesis: proof obligation:
trace valid up to this point still valid after step?

Quark Kernel: Code, Spec,

I N N | 2N

induction hypothesis: proof obligation:
trace valid up to this point still valid after step?

Proceed by case analysis on kstep ()
what syscalls can be appended to trace?
will they still satisfy all security properties?

brove each case interactively in proof assistant

Quark Kernel: Code, Spec,

Proving required diverse range of tools

monads encoding I/O in functional language
Hoare logic reasoning about imperative programs
op. semantics defining correctness of Quark kernel

linear logic proving resources created / destroyed

YNot

[Naneveski et al. ICFP 08]

Quark Kernel: Code, Spec, Proof

Key Insight: FSV Effective

Guarantee sec props for browser
Use state-of-the-art components

Only prove simple browser kernel

Formally Verified Browser!

Quark Web Browser Kernel

| cs.washington.edu | central—cinema.com | hollowearthradio.org | amazon.com |
4 B

Clooney slams story Deadly N.Y. storm Bodies found in Iraq Pizza for passengers $35K potato salad Obama horse mask ... Tallest water slic

TR TTRE N . 8 R .
- — . . 5 - B ‘ “Te . : (A »
P J 2 g)'!\’J ., . T v '-‘a" . E q £ ’
> ot . - . -
MU, \ 5 ; > - . & .
j ! 1 - -

< e Al

’

Extending Quark

Filesystem access, sound, history
could be implemented w/out major redesign

Finer grained resource accesses
support mashups and plugins

Liveness properties
no blocking, kernel eventually services all requests

Trusted Computing Base

Infrastructure we assume correct
bugs here can invalidate our formal guarantees

Statement of security properties

Fundamental Coq (soundness, proof checker)
OCaml [VeriML]
Eventually Tab Sandb RockSal
Verified > Sanchox Rockeaty

Operating System [sel4]

[active research]

Quark Development Effort

|50 lines of
900 lines of

4,500 lines of proofs
1,000,000 lines of VWebKit

Quark Development Effort

900 lines of
4,500 lines of proofs

Mitigating the Burden of Proof

|: Scaling proofs to critical infrastructure

Formal shim verification for large apps

—> QUARK: browser with security guarantees

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Mitigating the Burden of Proof

|: Scaling proofs to critical infrastructure

Formal shim verification for large apps

QUARK: browser with security guarantees

2: Evolving formally verified systems

—> Reflex DSL exploits domain for proof auto

Struggle Against Formality Inertia

Adding cookies to Quark quite difficult
all the pieces already there, still took over a month

Proof updates repetitive and shallow
sensitive proof scripts, changes not mechanical

match svec_ith PAYREST i as _vi return

forall (EQ: (svec_ith (projT2 (existT vcdesc' ENVD_SIZE PAYREST)) i) = _vi),
match _vi as __d return (base_term (existT vcdesc' ENVD_SIZE PAYREST) __ d -> Prop)
with

| Desc 4 => fun _ => True

| comp ¢ => fun b=> FdSet.In
(comp_fd (projTl (eval_base_term (envd:=existT _ ENVD_SIZE PAYREST) erest b))) fds end
match EQ in _ = __ vi return base_term _ _ vi with Logic.eq_refl =>
Var (existT vcdesc' ENVD_SIZE PAYREST) i end
->
match _vi as __d return (base_term (existT vcdesc' (S ENVD_SIZE) (PAYO, PAYREST)) _ d -> Prop) with
| Desc @ => fun _ => True
| comp ¢ => fun b =>
FdSet.In (comp_fd (projTl (eval_base_term (envd:=existT _ (S ENVD_SIZE) (PAYO, PAYREST)) (e0O, erest) b))) fds end
match EQ in _ = _ vi return base_term _ _ vi with Logic.eq_refl =>
Var (existT vcdesc' (S ENVD_SIZE) (PAYO, PAYREST)) (Some i) end
with
| bDesc d => _ | Comp ¢ => _ end (Logic.eq refl _)

Division of Labor (o scale)

Division of Labor

|deal?

Division of Labor

Spec just application
Code specific bits

Division of Labor

Spec

Spec ?
Code — - Code

Proof

Division of Labor
Spec
Spec
Code —>< Code

Proof

Division of Labor

Spec
Spec
Code —p | DSL Code

Easier to implement,

verify, and maintain

Proof

Does not demand

verification expertise

Reflex:a DSL for Reactive Systems

Exploit structure of app domain

kernel based archs, well suited to FSV design

e.g. tabs, cookie managers
e.g. GetCookie, MouseClick

Components
Messages

Reflex:a DSL for Reactive Systems

Exploit structure of app domain

kernel based archs, well suited to FSV design

Components
Messages

when component C

sends message M ...

Handlers:
When C sends M:

... react by:

updating state loop free!

accessing resources

sending messages

Reflex:a DSL for Reactive Systems

Exploit structure of app domain

kernel based archs, well suited to FSV design

Provide expressive spec language

subset of LTL and non-interference properties

cookie
forall d c, Integrity
[Recv (Tab(d) , CookieSet(c))]

Enables
[Send (CookieMgr (d) , CookieSet(c))]

Reflex:a DSL for Reactive Systems

Exploit structure of app domain

kernel based archs, well suited to FSV design

Provide expressive spec language

subset of LTL and non-interference properties

Auto prove user-provided specs

exploit domain, ensure all traces match spec

Counterexample-driven search discovers invariants.

Reflex:a DSL for Reactive Systems

Reflex Effective:

Prototype sshd, browser, httpd
Specify basic access controls

Auto prove user-provided specs

Reflex: Evaluation

auto prove non-interference

Web Domains do not interfere,
browser Cookie integrity, ...
SSH No PTY access before authentication,
server At most 3 authentication attempts, ...
auto prove non-local props
Web Clients only spawned after successful 1ogin,
server File requests guarded by access control, ...

Auto verified 33 properties (80% in < 2 minutes)

Reflex: Development Effort

Reflex

/500 lines of Cog

Web browser | SSH server Web server

Quark Web browser :

5500 lines Of COC] Single reactive system

Mitigating the Burden of Proof

|: Scaling proofs to critical infrastructure

Formal shim verification for large apps

QUARK: browser with security guarantees

2: Evolving formally verified systems

—> Reflex DSL exploits domain for proof auto

Double Trouble

x = 0.1 + 0.2;

1f (x 1= 0.3)

printf(“wat.\n");

Numerical

'n
for Scientisrs
and Engineers

RW Homming
Secoeat Eowen

Futz Analyze

o

HEY! GET BACK
TO WORK'

_ess Double Trouble

N 100% + —
\
'
—
> P 75% +
N =
4 =
\ =
N E 50% Jr
> - JJ
> (=]
. ®
’ 25% +
>
-)
IJ
= v 0% +—— 4 4 % + bt
E > 0 15 30 45 60 75 S0 105 120 135 150 165 180
\
:5) ’ . Time to run Casio (s)
L4
aa) 5
3
> lmf* - —
N —’_I_H
—_—
> g TR
> :
¢ S
> -§ 50(* -
> s
> ®
> 25(* .
>
l l L l | l L | Y
| | |] | | | | | ’
0% +— 4 4 : ! $ $ + 4 t $ }
O 8 16 24 32 40 48 56 64 012 4 6 & 10 12 14 16 18 20 22 2

Casio overhead (ratio)

Neutron Beams UW Medicine

SCHOOL OF MEDICINE

IF YOU NEED ACCESS,
SEE ENGINEERING
STAFE IN NNI43E

i |,
B B O s bl S— -t

DO NOT FPLACE ANy Tz

PRE-ACTION
SPRINKLER VALVE
NSIDE ROOM

Neutron Beams UW Medicine

SCHOOL OF MEDICINE

G https://news.ycombinator.com

[_7_] ,

' A . re W My ApOMr wit rey v Vertdind Ke
A UUGIN A SCCUIC YOO DHOWOL WILH 8 FOINAaNny vemniiea Ancines

2. » Writing an nginx authc."micatlon module in Lua and Go (=

1. a Code & Conquer: A War Game for Coders

i A Propos;;l to Chanq-e thc Default TLS Ciphersuites Offered by Browsers

5 a The backlash against running firms like progressive schools has begun
» Darkness (w

7. A énq Data and th; Soviet Ghosts

8. a Startup Ideas Evgty Nerd Has (That Never Work) (swombat

9 A GCP - c.p with a progress bar
» Doing Good n the Addiction Economy "

I a Yahoo says U.S. sought g

Ve

2 a Setup a Docker Con

Achievement unlocked

Thank You!

Goal: mitigate formality inertia

address scaling and evolving formally verified systems

| . Extend verification frontier

develop techniques to verify critical “pinch points™

2. Make verification accessible

equip domain experts with effective tools

@ not optimized B + socket (same origin) [0 + socket (whitelist) B + cookie cache

=S

w

Load Time (Normalized to WebKit)

2

ARRRRRRAA

B EILRRIRI R
%90% \,bc?"ooo \\o‘i&o *%’Qo ’b(&&o\é@&b sc‘.‘&@} Q\pq;\ \o\o"o

Verifying Optimizations

Rich compiler correctness history:
McCarthy 67, Samet 75, Cousot 77, ...

Already solved!?

Compiler Bugs Found
GCC 122 many.
optimization
LLVM 181 bugs
CompCert

lacks many
[Yang et al. PLDI 117] optimizations

Verifying Optimizations

Verifying Optimizations

CompCert
S I L

Verifying Optimizations

Proof original and opt code equivalent.

CompCert
S I L

Verifying Optimizations

Proof original and opt code equivalent.

Construct bisimulation relation:

CompCert

ﬂIAsm j

Verifying Optimizations

Proof original and opt code equivalent.

Constru| if orig and opt in fition:
o equal states
*---o

CompCert

ﬂIAsm j

Verifying Optimizations

Proof original and opt code equivalent.

Constru| if orig and opt in fition:
equal states

and orig prog can
take some action

CompCert

ﬂIAsm j

Verifying Optimizations

Proof original and opt code equivalent.

Construct bisimulation relation:

then opt prog can
take same action to
another equal state

Verifying Optimizations

Proof original and opt code equivalent.

Construct bisimulation relation:

P! J
e T implies: anything orig
$ can do, opt can do too

Verifying Optimizations

Proof original and opt code equivalent.

Construct bisimulation relation:
P!

P’ = P P P
--9 /\ *---9 ¢---

ﬂIAsm j

Verifying Optimizations

Proof original and opt code equivalent.

Construct bisimulation relation:

P
.----

Verifying Optimizations

Proof original and opt code equivalent.

Construct bisimulation relation:

P P
SEErS Sy ®---

=1 | /\

Verifying Optimizations

Formally Proved: LIP[] Rewrite

Rewrites locally correct @/ Local Proofs
—> - bisimulation relation

CompCert

0 *
o o
D *
D
L4 0‘
K] R
L .’
Y »
N *
& *
o o
0 *
D R
Y *
& *
& *

CompCert

Verifying Optimizations

Rewrlte Rule Rewrite
' Local Proofs

CompCert

Verifying Optimizations

Auto prove complex opts:
software pipelining

loop fusion / distribution

loop unswitching

Verifying Optimizations
Rewrite Rule Rewrite
§ » - Local Proofs

CompCert

Future Work

Generating and evaluating specs

techniques to ensure spec matches intuition

Even perfect program verification can
only establish that a program meets its
specification... Much of the essence of
building a program is in fact the

debugging of the specification.

Frederick P. Brooks, Jr.
No Silver Bullet

Infrastructure

Software

l.l|
BB A

r/anvlcsﬁ v

Quark Usability

I -«'!‘)fi.”()()“l(?.(f(). l amazZon.com l ril(ﬁ(f')()()k +CON l

+Quark Search Images Maps Play YouTube News Gmail Documents Calendar More -

Google Search I'm Feeling Lucky

And we have lift off! Celebrate 50 years of the Kennedy Space Center with Google Maps

Browsers: Critical Infrastructure

Browsers: Critical Infrastructure

CHASE O
—— 1l FARGO I NG "“‘

VISA

Browsers: Critical Infrastructure

Browsers: Critical Infrastructure

CHASE § 3

I’ !
'o vy J
“

9V o

Hotmail

Browsers: Critical Infrastructure

'VISA

Browsers: Critical Infrastructure

G | —==
m : Conference
[Subm|55|ons

Hotmall

