
Securing Systems
via Design and Proof

Software Infrastructure

Software Infrastructure is Shaky

Software Infrastructure is Shaky

Software Infrastructure is Shaky

)
prog
error

patch

1

Edsger W. Dijkstra
Under the Spell of Leibniz's Dream

When exhaustive testing is impossible,
our trust can only be based on proof.

... not just a dream!

proofs won’t happen

Proof Assistant Based Verification

Fully formal, machine checkable proof

Develop correctness proof in synch

Code in language suited for reasoning

Verified Compiler: CompCert

Compiler Bugs Found

GCC 122

LLVM 181

CompCert ?
[Yang et al. PLDI 11]

Proof Assistant Based Verification

[Leroy POPL 06]

Verified Compiler: CompCert

Compiler Bugs Found

GCC 122

LLVM 181

CompCert 0
[Yang et al. PLDI 11]

Proof Assistant Based Verification

realistic implementation guaranteed bug free
Verified OS kernel: seL4 [Klein et al. SOSP 09]

[Leroy POPL 06]

[Vu et al. PLDI 14]

Verified Compiler: CompCert

Verified OS kernel: seL4
realistic implementation guaranteed bug free

Compiler Bugs Found

GCC 122

LLVM 181

CompCert 0
[Yang et al. PLDI 11]

Proof Assistant Based Verification

[Klein et al. SOSP 09]

[Leroy POPL 06]

no prog
errors

)
Proof

Promise

)

no prog
errors

Proof

Promise

)

no prog
errors

Proof

Today

prog
error patch

)

Proof
Burden

Promise

)

no prog
errors

Proof

Today

prog
error patch

)

Proof
Burden

Promise

)

no prog
errors

Proof

Today

prog
error patch

)

The Burden of Proof

2. Code updates require re-proving

1. Initial proofs require heroic effort
CompCert: 70% proof, vast majority of effort

seL4: 200,000 line proof for 9,000 lines of C

seL4: changing RPC took 17% of proof effort

CompCert: adding opts [Tristan POPL 08, PLDI 09, POPL 10]

1: Scaling proofs to critical infrastructure

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Formal shim verification for large apps

QUARK: browser with security guarantees

Mitigating the Burden of Proof

Fully Formal Verification

Fully Formal Verification

Proof
Assistant

Coq Theorem Prover

Fully Formal Verification

Code
Proof

Assistant
in language
suited to
reasoning

Fully Formal Verification

Code

Spec

Proof
Assistant

logical properties
characterizing correctness

Fully Formal Verification

Code

Spec

Proof
Assistant

Grad

interactively show
code satisfies
specification

Fully Formal Verification

Code

Spec

Proof
Assistant

Grad

ML x86

compile down to
machine code

Fully Formal Verification

Code

Spec

Proof
Assistant

Extremely strong
guarantees about

actual system!Grad

ML x86

Fully Formal Verification

Fully Formal Verification

program in a purely
functional language

Fully Formal Verification

specification
characterizes

desired behavior

Fully Formal Verification

claim program
satisfies spec

construct proof
interactively

Fully Formal Verification

Fully Formal Verification
browsers don’t

 look like factorial

browsers don’t
 have simple specs

even easy proofs grow quickly
and become opaque

Fully Formal Verification

Scrap existing code, rewrite

Invest decades of person-years

Intractable for large-scale apps

Formally Verify a Browser?!

Formally Verify a Browser?!

Millions of LOC

Web
Browser

Formally Verify a Browser?!

Millions of LOC

High performance

JPEG

HTML

JavaScript

Formally Verify a Browser?!

Millions of LOC

High performance

Loose access policy
JPEG

HTML

JavaScript

Resources

Formally Verify a Browser?!

Millions of LOC

High performance

Loose access policy

Constant evolution
JPEG

HTML

JavaScript

Resources

Formally Verify a Browser?!

JPEG

HTML

JavaScript

Resources
Isolate

sandbox untrusted code

Formally Verify a Browser?!

JPEG

HTML

JavaScript

Resources

Shim

Implement shim
guards resource access

Isolate
sandbox untrusted code

Formally Verify a Browser?!

JPEG

HTML

JavaScript

Resources

Shim
✔

Implement shim
guards resource access

Verify shim
prove security policy

Isolate
sandbox untrusted code

Implement shim
guards resource access

Verify shim
prove security policy

Isolate
sandbox untrusted code

JPEG

HTML

JavaScript

Resources

Shim
✔

Formal Shim Verification

Implement shim
Verify shim

Isolate

JPEG

HTML

JavaScript

Resources

Shim
✔

Formal Shim Verification

Applies when:
1. sys fits architecture

2. policy over resources

browser, httpd, sshd, ...

Untrusted
Code

Sandbox

Implement shim
Verify shim

Isolate

JPEG

HTML

JavaScript

Resources

Shim
✔

Formal Shim Verification

Applies when:
1. sys decomposable

2. policy over resources

browser, httpd, sshd, ...

Untrusted
Code

Sandbox

Key Insight: Focus Effort
Guarantee sec props for entire system

Only implement and prove small shim

Radically ease verification burden

Prove actual code correct

1: Scaling proofs to critical infrastructure

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Formal shim verification for large apps

QUARK: browser with security guarantees

Mitigating the Burden of Proof

1: Scaling proofs to critical infrastructure

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Formal shim verification for large apps

QUARK: browser with security guarantees

Mitigating the Burden of Proof

Browsers: Critical Infrastructure

Browsers: Vulnerable

[Jang et al. W2SP]

Defenses / Policies:

[Stamm et al. WWW]

[Jackson et al. W2SP]

[Barth et al. CCS]

[Singh et al. OAKLAND]

. . .

Complex +
Implementation Bugs

Sandbox..

Quark: Verified Browser

Shim
✔

Resources

Untrusted
Code

Sandbox..

Quark: Verified Browser

Shim
✔

Untrusted
Code

Resources

Sandbox..

Quark: Verified Browser

Shim
✔

Untrusted
Code

Resources

persistent storage

user interface

networkNet

Sandbox..

Quark: Verified Browser

Untrusted
Code

Resources
Net

Shim
✔

Sandbox..

Quark: Verified Browser

✔

Untrusted
Code

Resources
Net

Quark Kernel
✔

Shim

code, spec, proof in Coq

Quark browser kernel

Quark: Verified Browser

✔

Resources
Net

Quark Kernel
✔

Shim

Sandbox..

Untrusted
Code

Quark: Verified Browser

✔

Resources
Net

Quark Kernel
✔

Shim

Sandbox..

Untrusted
Code

Untrusted Code

run as separate procs

strictly sandboxed

browser components

Quark: Verified Browser

✔

Resources
Net

Quark Kernel
✔

Shim

Sandbox..

Untrusted
Code

Untrusted Code

talk to kernel over pipe

run as separate procs

strictly sandboxed

browser components

Quark: Verified Browser

✔

Resources
Net

Quark Kernel
✔

Shim

Sandbox..

Untrusted
Code

Untrusted Code

two component types

Quark: Verified Browser

✔

Resources
Net

Quark Kernel
✔

Shim
Untrusted Code

two component types

WebKit
Tab

modified WebKit,
intercept accesses

WebKit
Tab

Quark: Verified Browser

✔

Resources
Net

Quark Kernel
✔

Shim
Untrusted Code

two component types

WebKit
Tab

Quark: Verified Browser

✔

Resources
Net

Quark Kernel
✔

Shim
Untrusted Code

Cookie
Manager

two component types

written in Python,
manages single domain

Quark: Verified Browser
Resources
Shim
Untrusted Code

✔

Net

Quark Kernel
✔

Cookie
Manager

WebKit
Tab

WebKit tabs

cookie managers

two component types

Quark: Verified Browser
Resources
Shim
Untrusted Code

✔

Net

Quark Kernel
✔

Cookie
Manager

WebKit
Tab

WebKit
Tab

WebKit
Tab

Cookie
Manager

several instances each

WebKit tabs

cookie managers

two component types

Quark: Verified Browser

✔

Net

Quark Kernel
✔

Cookie
Manager

WebKit
Tab

WebKit
Tab

WebKit
Tab

Cookie
Manager

Quark: Verified Browser

Quark Kernel
✔

Quark Kernel

Quark Kernel
✔

Quark Kernel: Code, Spec, Proof

Quark Kernel
✔

Quark Kernel: Code, Spec, Proof

Quark Kernel
✔

Quark Kernel: Code, Spec, Proof

Quark Kernel: Code, Spec, Proof

Definition kstep ...

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 ...

kernel state

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 ...

Unix-style select to
find a component
pipe ready to read

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 match f with
 | Stdin =>
 ...
 | Tab t =>
 ...

case: f is user input

case: f is tab pipe

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 match f with
 | Stdin =>
 cmd <- read_cmd(stdin);
 ...

 | Tab t =>
 ...

read command from
user over stdin

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 match f with
 | Stdin =>
 cmd <- read_cmd(stdin);
 match cmd with
 | AddTab =>
 ...

 | ...
 | Tab t =>
 ...

user wants to create
and focus a new tab

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 match f with
 | Stdin =>
 cmd <- read_cmd(stdin);
 match cmd with
 | AddTab =>
 t <- mk_tab();
 ...

 | ...
 | Tab t =>
 ...

create a new tab

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 match f with
 | Stdin =>
 cmd <- read_cmd(stdin);
 match cmd with
 | AddTab =>
 t <- mk_tab();
 write_msg(t, Render);
 ...
 | ...
 | Tab t =>
 ...

tell new tab to
render itself

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 match f with
 | Stdin =>
 cmd <- read_cmd(stdin);
 match cmd with
 | AddTab =>
 t <- mk_tab();
 write_msg(t, Render);
 return (t, t::tabs)
 | ...
 | Tab t =>
 ...

return updated state

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 match f with
 | Stdin =>
 cmd <- read_cmd(stdin);
 match cmd with
 | AddTab =>
 t <- mk_tab();
 write_msg(t, Render);
 return (t, t::tabs)
 | ...
 | Tab t =>
 ...

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 match f with
 | Stdin =>
 cmd <- read_cmd(stdin);
 match cmd with
 | AddTab =>
 t <- mk_tab();
 write_msg(t, Render);
 return (t, t::tabs)
 | ...
 | Tab t =>
 ...

handle other
user commands

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 match f with
 | Stdin =>
 cmd <- read_cmd(stdin);
 match cmd with
 | AddTab =>
 t <- mk_tab();
 write_msg(t, Render);
 return (t, t::tabs)
 | ...
 | Tab t =>
 ...

handle requests
from tabs

Quark Kernel: Code, Spec, Proof

Definition kstep(focused_tab, tabs) :=
 f <- select(stdin, tabs);
 match f with
 | Stdin =>
 cmd <- read_cmd(stdin);
 match cmd with
 | AddTab =>
 t <- mk_tab();
 write_msg(t, Render);
 return (t, t::tabs)
 | ...
 | Tab t =>
 ...

Quark Kernel: Code, Spec, Proof

Quark Kernel: Code, Spec, Proof

Quark Kernel: Code, Spec, Proof
Safety properties to mitigate attacks

restrict kernel behavior to only safe executions

Example: mitigate phishing attacks
prevent tricks that get users to divulge secrets

seems legit

Quark Kernel: Code, Spec, Proof
Safety properties to mitigate attacks

restrict kernel behavior to only safe executions

Example: mitigate phishing attacks

spoofed!

prevent tricks that get users to divulge secrets

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

read(), write(), open(), write(), ...

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

trace: all syscalls made
by Quark kernel
during execution

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

kstep()kstep()kstep()kstep()

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

structure of produceable traces supports spec & proof

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

structure of produceable traces supports spec & proof

Example: address bar correctness

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

structure of produceable traces supports spec & proof

forall trace tab domain,

 ...

for any trace, tab,
and domain

Example: address bar correctness

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

structure of produceable traces supports spec & proof

forall trace tab domain,

 quark_produced(trace) /\

 ...
if Quark could have
produced this trace

Example: address bar correctness

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

structure of produceable traces supports spec & proof

forall trace tab domain,

 quark_produced(trace) /\

 tab = cur_tab(trace) /\

 ...
and tab is the selected

tab in this trace

Example: address bar correctness

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

structure of produceable traces supports spec & proof

forall trace tab domain,

 quark_produced(trace) /\

 tab = cur_tab(trace) /\

 domain = addr_bar(trace) ->

 ...

and domain displayed in
address bar for this trace

Example: address bar correctness

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

structure of produceable traces supports spec & proof

forall trace tab domain,

 quark_produced(trace) /\

 tab = cur_tab(trace) /\

 domain = addr_bar(trace) ->

 domain = tab_domain(tab)

then domain is the
domain of the
focused tab

Example: address bar correctness

Quark Kernel: Code, Spec, Proof
Specify correct behavior wrt syscall seqs

structure of produceable traces supports spec & proof

forall trace tab domain,

 quark_produced(trace) /\

 tab = cur_tab(trace) /\

 domain = addr_bar(trace) ->

 domain = tab_domain(tab)

Example: address bar correctness

Quark Kernel: Code, Spec, Proof

Formal Security Properties
Tab Non-Interference
no tab affects kernel interaction with another tab

Cookie Confidentiality and Integrity
cookies only accessed by tabs of same domain

Address Bar Integrity and Correctness
address bar accurate, only modified by user action

Quark Kernel: Code, Spec, Proof

Quark Kernel: Code, Spec, Proof

Quark Kernel: Code, Spec, Proof

Prove kernel code satisfies sec props
by induction on traces Quark can produce

Quark Kernel: Code, Spec, Proof

Prove kernel code satisfies sec props

induction hypothesis:
trace valid up to this point

by induction on traces Quark can produce

✔

Quark Kernel: Code, Spec, Proof

Prove kernel code satisfies sec props

induction hypothesis:
trace valid up to this point

proof obligation:
still valid after step?

+

by induction on traces Quark can produce

?
✔

Quark Kernel: Code, Spec, Proof

induction hypothesis:
trace valid up to this point

proof obligation:
still valid after step?

+ ?
✔

Proceed by case analysis on kstep()
what syscalls can be appended to trace?

will they still satisfy all security properties?

prove each case interactively in proof assistant

Proving required diverse range of tools

encoding I/O in functional languagemonads

reasoning about imperative programsHoare logic

defining correctness of Quark kernelop. semantics

proving resources created / destroyedlinear logic

YNot
[Naneveski et al. ICFP 08]

Quark Kernel: Code, Spec, Proof

Quark Kernel: Code, Spec, Proof

Key Insight: FSV Effective
Guarantee sec props for browser

Use state-of-the-art components

Only prove simple browser kernel

Formally Verified Browser!

no blocking, kernel eventually services all requests
Liveness properties

support mashups and plugins
Finer grained resource accesses

could be implemented w/out major redesign

Extending Quark

Filesystem access, sound, history

Trusted Computing Base

Infrastructure we assume correct
bugs here can invalidate our formal guarantees

Statement of security properties
Coq (soundness, proof checker)

Fundamental

OCaml [VeriML]
Tab Sandbox [RockSalt]
Operating System [seL4]

...

Eventually
Verified

[active research]

Quark Development Effort

lines of security props150

lines of WebKit1,000,000

lines of kernel code900

lines of proofs4,500

Quark Development Effort

lines of security props150

lines of WebKit1,000,000

lines of kernel code900

lines of proofs4,500

week

months

1: Scaling proofs to critical infrastructure

Mitigating the Burden of Proof

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Formal shim verification for large apps

QUARK: browser with security guarantees

1: Scaling proofs to critical infrastructure

Mitigating the Burden of Proof

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Formal shim verification for large apps

QUARK: browser with security guarantees

Struggle Against Formality Inertia

Adding cookies to Quark quite difficult
all the pieces already there, still took over a month

Proof updates repetitive and shallow
sensitive proof scripts, changes not mechanical

match svec_ith PAYREST i as _vi return
 forall (EQ: (svec_ith (projT2 (existT vcdesc' ENVD_SIZE PAYREST)) i) = _vi),
 match _vi as __d return (base_term (existT vcdesc' ENVD_SIZE PAYREST) __d -> Prop)
 with
 | Desc d => fun _ => True
 | Comp c => fun b=> FdSet.In
 (comp_fd (projT1 (eval_base_term (envd:=existT _ ENVD_SIZE PAYREST) erest b))) fds end
 match EQ in _ = __vi return base_term _ __vi with Logic.eq_refl =>
 Var (existT vcdesc' ENVD_SIZE PAYREST) i end
 ->
 match _vi as __d return (base_term (existT vcdesc' (S ENVD_SIZE) (PAY0, PAYREST)) __d -> Prop) with
 | Desc d => fun _ => True
 | Comp c => fun b =>
 FdSet.In (comp_fd (projT1 (eval_base_term (envd:=existT _ (S ENVD_SIZE) (PAY0, PAYREST)) (e0, erest) b))) fds end
 match EQ in _ = __vi return base_term _ __vi with Logic.eq_refl =>
 Var (existT vcdesc' (S ENVD_SIZE) (PAY0, PAYREST)) (Some i) end
with
| Desc d => _ | Comp c => _ end (Logic.eq_refl _)

Division of Labor

Proof

Code

Spec

(to scale)

Division of Labor

Proof

Code

Spec

Ideal?

Division of Labor

Proof

Code

Spec

Code
Spec just application

specific bits

(no manual proof)

Division of Labor

Proof

Code

Spec

Code
Spec ?

Division of Labor

Proof

Code

Spec

Code
Spec

DSL

Division of Labor

Proof

Code

Spec

Code
Spec

DSL

Easier to implement,
verify, and maintain

Does not demand
verification expertise

Components = ...
Messages = ...

Reflex: a DSL for Reactive Systems

kernel based archs, well suited to FSV design

Exploit structure of app domain

e.g. tabs, cookie managers

e.g. GetCookie, MouseClick

[PLDI 14]

Reflex: a DSL for Reactive Systems

kernel based archs, well suited to FSV design

Exploit structure of app domain

Components = ...
Messages = ...

Handlers:
 When C sends M:
 ...

 When C’ sends M’:
 ...

... react by:
 updating state
 accessing resources
 sending messages

when component C
sends message M ...

[PLDI 14]

loop free!

Provide expressive spec language
subset of LTL and non-interference properties

forall d c,
 [Recv(Tab(d), CookieSet(c))]
 Enables
 [Send(CookieMgr(d), CookieSet(c))]

cookie
integrity

kernel based archs, well suited to FSV design

Exploit structure of app domain

Reflex: a DSL for Reactive Systems
[PLDI 14]

Reflex: a DSL for Reactive Systems

Provide expressive spec language
subset of LTL and non-interference properties

kernel based archs, well suited to FSV design

Exploit structure of app domain

Auto prove user-provided specs
exploit domain, ensure all traces match spec

Counterexample-driven search discovers invariants.

[PLDI 14]

Reflex: a DSL for Reactive Systems

Provide expressive spec language
subset of LTL and non-interference properties

kernel based archs, well suited to FSV design

Exploit structure of app domain

Auto prove user-provided specs
exploit domain, ensure all traces match spec

Prototype sshd, browser, httpd

Specify basic access controls

Auto prove user-provided specs

Reflex Effective:

[PLDI 14]

Reflex: Evaluation

Web
browser

Domains do not interfere,
Cookie integrity, …

SSH
server

No PTY access before authentication,
At most 3 authentication attempts, …

Web
server

Clients only spawned after successful login,
File requests guarded by access control, …

Auto verified 33 properties (80% in < 2 minutes)

auto prove non-interference

auto prove non-local props

Reflex: Development Effort

Reflex :
7500 lines of Coq

Quark Web browser :
5500 lines of Coq Single reactive system

Many reactive systems

Web browser SSH server Web server

1: Scaling proofs to critical infrastructure

Mitigating the Burden of Proof

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Formal shim verification for large apps

QUARK: browser with security guarantees

AND NOW FOR

SOMETHING 
COMPLETELY 
DIFFERENT

Double Trouble

x = 0.1 + 0.2;
if (x != 0.3)
 printf(“wat.\n”);

Futz Analyze

Big Float

Less Double Trouble

Neutron Beams

Neutron Beams

1. Extend verification frontier
develop techniques to verify critical “pinch points”

address scaling and evolving formally verified systems

Goal: mitigate formality inertia

2. Make verification accessible
equip domain experts with effective tools

Thank You!

Verifying Optimizations

Compiler Bugs Found

GCC 122

LLVM 181

CompCert

[Yang et al. PLDI 11]

Already solved?

0

many
optimization

bugs

lacks many
optimizations

Rich compiler correctness history:
McCarthy 67, Samet 75, Cousot 77, . . .

Verifying Optimizations

CompCert

C Asm

Verifying Optimizations

CompCert

C Asm

Proof original and opt code equivalent.

Verifying Optimizations

CompCert

C Asm

Proof original and opt code equivalent.

Verifying Optimizations

Construct bisimulation relation:

CompCert

C Asm

Proof original and opt code equivalent.

P P’

Verifying Optimizations

Construct bisimulation relation:if orig and opt in
equal states

CompCert

C Asm

Proof original and opt code equivalent.

P P’

Verifying Optimizations

Construct bisimulation relation:if orig and opt in
equal states

and orig prog can
take some action

CompCert

C Asm

Proof original and opt code equivalent.

P P’

Verifying Optimizations

Construct bisimulation relation:

)
P P’ then opt prog can

take same action to
another equal state

CompCert

C Asm

Proof original and opt code equivalent.

P P’

Verifying Optimizations

Construct bisimulation relation:

)
P P’

implies: anything orig
can do, opt can do too

CompCert

C Asm

Proof original and opt code equivalent.

P P’

Verifying Optimizations

Construct bisimulation relation:

)
P P’ P P’ P P’

)
.̂ . . also prove inverse

CompCert

C Asm

Proof original and opt code equivalent.

P P’

Verifying Optimizations

Construct bisimulation relation:

)
P P’ P P’ P P’

)^
together, implies indistinguishability

CompCert

C Asm

Proof original and opt code equivalent.

P P’

Verifying Optimizations

Construct bisimulation relation:

)
P P’ P P’ P P’

)^

CompCert

XCert

Rewrite

ü Local Proofs

CompCert

C Asm

? ?

Verifying Optimizations
Formally Proved:
 Rewrites locally correct
 bisimulation relation) 9.

CompCert

XCert

Rewrite

ü Local Proofs

C Asm

?
?

Rewrite Rule

Verifying Optimizations

PEC

CompCert

XCert

Rewrite

ü Local Proofs

C Asm

?
Rewrite Rule

Verifying Optimizations

Auto prove complex opts:
 software pipelining
 loop fusion / distribution
 loop unswitching
 ...

PEC

CompCert

XCert

Rewrite

ü Local Proofs

C Asm

?
Rewrite Rule

PEC

Verifying Optimizations

Future Work

Generating and evaluating specs
techniques to ensure spec matches intuition

Frederick P. Brooks, Jr.
No Silver Bullet

Even perfect program verification can
only establish that a program meets its
specification... Much of the essence of
building a program is in fact the
debugging of the specification.

Software Infrastructure

Quark Usability

Browsers: Critical Infrastructure

Browsers: Critical Infrastructure

Browsers: Critical Infrastructure

Browsers: Critical Infrastructure

Browsers: Critical Infrastructure

Browsers: Critical Infrastructure

Conference
Submissions

