Securing Systems
via Design and Proof

Software Infrastructure is Shaky

Ehe New YJork Eimes

Cars’ Computer Systems Called at Risk to Hackers

3y JOHN MARKOFF

biles, which will be i ingly cc
the near future, could be vulnerable to ha¢

now, two teams of computer scientists are . N
presented next week. Medical Derces

m U.S. Food and Drug
r Protecting and Promoting

The scient! List of Device

Connect With

FDA posts consumer

to remotely » Madical Device Recalls 70 st because Tere
functions,’ 2012 Medicai Dewce
- “ Recent Medi
was runnii -
. Listed by date poste
- Science Reporters and Editorson Sco U M .
Twitter Device Nar
“We demc - ——
e the science desk on Facebook. . h st
Like the seience desk on Faceby adversaria Vaives, Mod
4 aad Spacelabs &
‘ o automotiy Soeceunet
including disabling the brakes, selectively o8 Symbios Me
the engine, and so on,” they wrote in the n - S, oy
o Ac-Tech Mer

Modern Automobile.”

In the paper, which will be presented at z
Oakland, Calif., computer security specia
University of California, San Diego, repoi
engineering in the design of their compu
to the potential threat of hackers who mi

‘*——-

Electrodes

Systoms

St Jude Medical, AMPLATZER TorgVus FX Delivery System

Hamiton Medical, Inc., HAMILTON-T1 Ventilators with Software 02
Versions 1.1.2 and Lower

Vycor Medical,inc., Vycor Viewsite Brain Access System (VBAS) 01730113
Bausch and Lomb 27G Sterile Cannula Packed in Bausch and Lomb 0123113
Amvisc 12%

Sodhum Hyaharonate (Model 59051, 59081, 390811,
53081L) and Amvisc Plus 1.6% Sodium Mvak-~- =)

BloombergBusinessweek

Software Bug Made Swedish
Exchange Go Bork, Bork, Bork

By Ki

Weise on November 29, 2012

A computer error stalks the markets—again. An order on a relatively obscure
derivatives index in Stockholm yesterday was asking to buy futures contracts on
Swedish stocks valued at 131 times the country’s entire GDP. The order made the
exchange go “bananas” and caused Nasdaq OMX to stop trading in Swedish
derivatives for four hours.

This was no “fat finger” incident, where a trader accidentally types an extra few

digits or the wrong numbers in an order. Instead, a software glitch magnified an
order, Nasdaq OMX spokesman Carl Norell told Bloomberg News. “Our system
misinterpreted a certain order category and communicated a value that was way
too high into the book,” he said.

The interruption was in a small corner of the market, but it's just the latest ina
string of technical problems that have halted trading. As more trading is driven
by the algorithms of high-frequency traders, one glitch or bad order can spark
major disruptions. The 2010 flash crash caused $862 billion in stock values to

vanich f-~m the warket temporarily, and technical nrohla- ~tad Atk

and Panda Bag and Mask Resuscration

R ——

Software Infrastructure

Software Infrastructure is Shaky =~ When exhaustive testing is impossible,
our trust can only be based on proof.

() Edsger W. Dijkstra
Prog Under the Spell of Leibniz's Dream
error _
ﬁ Sgcial Processes and Proofs of Theorems
- i OO and Programs
& Georgia msiute of Technology | Proofs won’t happen]
Richard J. Lipton and Alan J. Perlis
Yale Universit y
patch

Proof Assistant Based Verification Proof Assistant Based Verification

Code in language suited for reasoning Verified Compiler: CompCert [eroy porL 06]

Compiler Bugs Found
GCC 122
Develop correctness proof in synch LLVM 18I
CompCert ?

[Yang et al. PLDI 17]
Fully formal, machine checkable proof

Proof Assistant Based Verification

Verified Compiler: CompCert (teroy porL 06]

Compiler

Bugs Found

GCC

122

LLVM

181

CompCert

[Yang et al. PLDI 11]
[Vu et al. PLDI 14]

Verified OS kernel: sel4 («ein et a.s05p 09]
realistic implementation guaranteed bug free

Promise

Proof

\

no prog
errors

Proof Assistant Based Verification

Proof

r—\
Prog patch
error

—, No prog
errors

Promise

Proof

|

no prog
errors

Today Promise Promise
L g ﬁ’ Proof Proof
U U Burden U
r\
grrr%% patch no prog nNo prog
L4 errors errors

The Burden of Proof

Mitigating the Burden of Proof

| Initial proofs require heroic effort

CompCert: 70% proof, vast majority of effort |: Scaling proofs to critical infrastructure

seL4: 200,000 line proof for 9,000 lines of C => Formal shim verification for large apps

QUARK: browser with security guarantees
2. Code updates require re-proving

CompCert: adding opts [Tristan POPL 08, PLDI 09, POPL 0] 2: Evolving formally veriﬁed systems

seL4: changing RPC took |7% of proof effort Reflex DSL exploits domain for proof auto

Fully Formal Verification

Fully Formal Verification

Code \

Proof
, Assistant
in language
suited to
reasoning

Fully Formal Verification

J Coq Theorem Prover]

Proof

Assistant

Fully Formal Verification

Code \
Spec /

Proof

Assistant

logical properties
characterizing correctness

Fully Formal Verification

Code \

Proof

Assistant

Spec /

I interactively show
code satisfies

specification
Grad

Fully Formal Verification

Code \

Ay ML |—>| x86
Assistant
Spec /
I Extremely strong

guarantees about
actual system!

Fully Formal Verification

Code \
Spec /

Proof

Assistant

!

ML

x86

compile down to
machine code

Fully Formal Verification

OO ® emacs @gear-u buntu-32
File Edit Options Buffers Tools Coq Proof-General Holes Help

Fully Formal Verification

emacs@gear-ubuntu-32

File Edit Options Buffers Tools Coq Proof-General

Fixpoint factorial n :=
match n with

[0 =1
| Sm=>n * factorial m
end.

program in a purely
functional language

Fully Formal Verification

emacs@gear-ubuntu-32

File Edit Options Buffers Tools Coq Proof-General Holes Help

Fixpoint factorial n :=
match n with

| 0 =1
| Sm=>n* factorial m
end.

Definition monotonic f :=

forall a b,
a<=b ->
fa<=fh.

Theorem example :

claim program

satisfies spec

monotonic factorial.

Proof.
construct proof

interactively

Fully Formal Verification

emacs@gear-ubuntu-32

File Edit Options Buffers Tools Coq Proof-General Holes Help

Fixpoint factorial n :=

match n with speciﬁcation

| 0 =1 c

| Sm=>n * factorial m characterizes
end. desired behavior

Definition monotonic f :=
forall a b,
a<=b ->
f a<=fb.)

Fully Formal Verification

emacs@gear-ubuntu-32

File Edit Options Buffers Tools Coq Proof-General Holes Help
»Fixpoint factorial n :=

match n with

|0 =1
| Sm=>n * factorial m
end.

Definition monotonic f :=
forall a b,
a<=b ->
fa<=fb.

Theorem example :
monotonic factorial.
Proof.
unfold monotonic. intros nl n2 H.
induction H. apply le refl. simpl.
apply le trans with (m := factorial m); auto.
destruct (mult_0 le (factorial m) m).
rewrite HO; simpl. apply le refl.
apply le trans with (m := m * factorial m); auto.
rewrite plus n 0 at 1. rewrite plus_comm.
apply plus le compat. apply le 0 n. apply le refl.
Qed.

Fully Formal Verification Fully Formal Verification

e browsers don’t
e look like factorial

]o =1 P
| Sm=>n * factorial m
end.

it e <[e T] Scrap existing code, rewrite

<=b
have simple specs
Invest decades of person-years

->
fa<=fob.

Theorem example :

monotonic factorial.
Proof.
unfold monotonic. intros nl n2 H.

Intractable for large-scale apps

rewrite HO; simpl. apply le
h (m

:=m * facto and become Opaque

apply le trans with (

rewrite plus n 0 at 1. rewrite plus
apply plus le compat. apply le 0 N. Swpe
ed. ‘

induction H. apply le_refl. simpl.
apply le trans with (m := factorial .
destruct (nult 0 le (factorial even easy proofs grow quickly

Formally Verify a Browser?! Formally Verify a Browser?!

Millions of LOC

Web
Browser

Formally Verify a Browser?!

JavaScript |:| |:

T T |
C10 ,wEG

OO
siljsi

HTML I:I

Millions of LOC

High performance

Formally Verify a Browser?!

Resources

i

JavaScript

O U
CIL0 JPEG

OO
[][]E:]
HTML

Millions of LOC
High performance
Loose access policy

Constant evolution

Formally Verify a Browser?!

Resources Millions of LOC
gggggggg High performance
JavaScript I: .
Onouo Loose access policy
I|:|:I|:||:|E JPEG
DDE
HTML

Formally Verify a Browser?!

Resources
Isolate
sandbox untrusted code

JavaScript |:| I:

O U
C L] JPEG

10
A
HTML

Formally Verify a Browser?! Formally Verify a Browser?!

Resources 5ol Resources <ol
solate solate
: sandbox untrusted code : sandbox untrusted code
Shim Shim
[rrrfftt [rrrfrrts
:] Implement shim : i Implement shim
JavaScript |:| guards resource access JavaScript |:| guards resource access
T=is s
PEG PEG : :
oocL |- J|:|I:I Verify shim
HTML I:I I: HTML I:I prove security POIIC)/
nllo

Formal Shim Verification Formal Shim Verification
Resources Resources Isolate
Isolate ,
Shi sandbox untrusted code Shi Implement shim
Im il Verify shim
[f11rrtrt Imblement shim [11rrtrt Y
: P ' i .

IS SRt |:||: guards resource access Sandbox Applies when:
OCre=Ud l. sys fits architecture
C UL g Untrusted
10 Verify shim 2. policy over resources

|:||:|] : : Code

HTML prove security policy browser, httpd, sshd, ...

Formal Shim Verification Mitigating the Burden of Proof

Key Insight: Focus Effort |: Scaling proofs to critical infrastructure
=> Formal shim verification for large apps
ge app

Guarantee sec props for entire system

QUARK: browser with security guarantees
Only implement and prove small shim

Radically ease verification burden 2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto
Prove actual code correct

Mitigating the Burden of Proof Browsers: Critical Infrastructure

B CHASE O 3

, - VISA FARGO ING ") E¥TRADE
Formal shim verification for large apps -

| | ﬂ'l”"/f 0, '"v
=> QUARK: browser with security guarantees .

2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto C':\L ” ? @

Hotmail

|: Scaling proofs to critical infrastructure

Browsers: Vulnerable Quark:Verified Browser

;:m20wn hacking contest puts record D efe nses / Po | icies:
$560K on the line

Google back as co-sponsor after organizer changes rules []ang et al. WZ SP] Res 0 u rc es

Bvumede-
January 18, 2013 10:67 AMET ©D 1 Comment

OB @@ e o e oy [Stamm et al. WWW] I

Computerworld - HP TippingPoint, the long-time organizer of the annual
Pwn20wn hacking contest, has revamped the challenge for the second year

running and will offer cash awards exceeding half a million dollars, more than
five times the amount paid out last year, the company said yesterday. [IaCkson et GI. WZ SP]

. ?
The 2013 edition of the contest will offer $560,000 in potential pnze money S h I I I I
to hackers who demonstrate exploits of iously-unknown vi
n Chrome, Firefox, Internet Explorer (IE) or Safari, o ¢ the Ado be Reader, [Barth et GI. CCS] ?

Ad be Flash or Oracle Java browser plug-ins.

Prizes will be awarded on a sliding schedule, with $100,000 for the first to

hack Chrome on Windows 7 or IE10 on Windows 8. From there, payments [Slngh et al. OAKLAND] Sandbox i

will fall to $75,000 for IE9 and slide through a number of targets before
ending at $20,000 for Java. Prizes will also be given for exploiting Adobe
Flash and Adobe Reader ($70,000 each), Safari ($65,000) and Firefox
($60,000).

About the Java award, Kostya Kortchinsky, a researcher who now works l ' n t r u Ste d
for Microsoft, quickly tweeted, "ZDI giving out $20k for free," referring to the

Oracle software's recent vulnerabilities. C O m I e X +
P Code

Pwn20wn will run March 6-8 at the CanSecWest security conference in

s i Comi ~mme | IMmplementation Bugs

Quark:Verified Browser Quark:Veriﬁed Browser

Resources

Resources
f network

persistent storage

user interface

Quark:Verified Browser Quark:Verified Browser

Shim

Quark browser kernel

Shim Quark Kernel code, spec, proof in Cog
Quark:Verified Browser Quark:Verified Browser
Untrusted Code
browser components
f f
Sandbox ‘ Sandbox i run as separate procs
Untrusted Untrusted strictly sandboxed

Code Code

Quark:Verified Browser Quark:Verified Browser

Untrusted Code Untrusted Code
browser components two component types
4 4
Sandbox ¢ run as separate procs Sandbox i
Untrusted strictly sandboxed Untrusted
Code talk to kernel over pipe Code
Quark:Verified Browser Quark:Verified Browser
Untrusted Code Untrusted Code
two component types two component types

!

WebKit modified WebKit,
Tab intercept accesses

Quark:Verified Browser

Untrusted Code

two component types

Cookie

written in Python,]
Manager

manages single domain

Quark:Verified Browser

Resources

QT o

Untrusted Code

Quark Kernel

!

\

WebKit
Tab

Cookie
Manager

Quark Kernel

!

\

WebKit
Tab

Cookie
Manager

two component types
WebKit tabs

cookie managers

several instances each

Quark Kernel

!

\

WebKit
Tab

Cookie
Manager

Quark:Verified Browser

@il

Resources

Shim

Untrusted Code
two component types

WebKit tabs

cookie managers

Quark:Verified Browser

@il m

Quark:Verified Browser Quark Kernel

Quark Kernel Quark Kernel

Quark Kernel: Code, Spec, Proof Quark Kernel: , Spec, Proof

Quark Kernel Quark Kernel

Quark Kernel: , Spec, Proof Quark Kernel: , Spec, Proof

Definition kstep ...

Quark Kernel: , Spec, Proof Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) := Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);

v

[kernel state] .
Unix-style select to

find a component
pipe ready to read

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);

match £ with
| Stdin => Acase: f is user input]

| Tab t => ﬁ case: £ is tab pipe]

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs)
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read_cmd(stdin);
match cmd with
| AddTab =>

user wants to create
and focus a new tab

| Tab t =>

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);

read command from
user over stdin

| Tab t =>

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=

f <- select(stdin, tabs);
match £ with
| Stdin =>

cmd <- read_cmd(stdin);

match cmd with

| AddTab =>

t <- mk_tab();

Ycreate a new tab]
| ...

| Tab t =>

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);
match cmd with
| AddTab =>
t <- mk_tab();
write msg(t, Render);

tell new tab to

| Tab t => .
render itself

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read_cmd(stdin);
match cmd with
| AddTab =>
t <- mk_tab();
write msg(t, Render);
return (t, t::tabs)

| Tab t =>

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read cmd(stdin);
match cmd with
| AddTab =>
t <- mk_tab();
write msg(t, Render);
return (t, t::tabs)

| Tab t => Yreturn updated state]

Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs);
match £ with
| Stdin =>
cmd <- read_cmd(stdin);
match cmd with
| AddTab =>
t <- mk_tab();
write msg(t, Render);
return (t, t::tabs)

handle other

| Tab t =>
user commands

Quark Kernel: , Spec, Proof Quark Kernel: , Spec, Proof

Definition kstep(focused tab, tabs) := Definition kstep(focused tab, tabs) :=
f <- select(stdin, tabs); f <- select(stdin, tabs);
match £ with match £ with
| Stdin => | Stdin =>
cmd <- read cmd(stdin); cmd <- read cmd(stdin);
match cmd with match cmd with
| AddTab => | AddTab =>
t <- mk_tab(); t <- mk_tab();
writ s write msg(t, Render);

t t, t::tab
handle requests return (abs)

from tabs

| Tab t =>

| Tab t =

Quark Kernel: , Spec, Proof Quark Kernel: Code, , Proof

Quark Kernel: Code, , Proof

Safety properties to mitigate attacks

restrict kernel behavior to only safe executions

Example: mitigate phishing attacks
prevent tricks that get users to divulge secrets

n | =y

. =Good Technology
seems legit ,
|] good.com

Quark Kernel: Code, , Proof

Specify correct behavior wrt syscall seqgs

read(), write(), open(), write(), ...

Quark Kernel: Code, , Proof

Safety properties to mitigate attacks

restrict kernel behavior to only safe executions

Example: mitigate phishing attacks
prevent tricks that get users to divulge secrets

= Cood Technology

B [good.com -\

[spoofed! J |28 =r

Quark Kernel: Code, , Proof

Specify correct behavior wrt syscall seqgs

n | =y

N\
\

N

trace: all syscalls made
by Quark kernel
during execution

Quark Kernel: Code, ,Proof Quark Kernel: Code, , Proof

Specify correct behavior wrt syscall seqgs Specify correct behavior wrt syscall seqgs

LYkstep ()]L\‘kstep () h‘kstep () h‘kstep ()) structure of produceable traces supports spec & proof

Quark Kernel: Code, ,Proof Quark Kernel: Code, , Proof

Example: address bar correctness Example: address bar correctness

forall trace tab domain,

A

for any trace, tab,
and domain

Quark Kernel: Code, , Proof

Example: address bar correctness

forall trace tab domain,

quark produced (trace) AN
if Quark could have
produced this trace

Quark Kernel: Code,

, Proof

Example: address bar correctness

forall trace t{ and domain displayed in
quark_produc{ address bar for this trace

tab = cur_tgAtrace) /\

domain = addr_ bar(trace) ->

Quark Kernel: Code, , Proof

Example: address bar correctness

forall trace tab domain,
quark produced (trace) N\
tab = cur_tab(trace) N\

and tab is the selected
tab in this trace

Quark Kernel: Code,

, Proof

Example: address bar correctness

forall trace tab dd then domain is the
quark_produced (t domain of the

tab = cur_tab(tr fOCUSGd tab
domain = addr_b T

tab_domain (tab)

domain

Quark Kernel: Code, , Proof

Example: address bar correctness

forall trace tab domain,
quark produced (trace) AN
tab = cur_tab(trace) A
domain = addr_bar (trace) ->
domain = tab_domain (tab)

Quark Kernel: Code, , Proof

Quark Kernel: Code, , Proof

Formal Security Properties

Tab Non-Interference
no tab affects kernel interaction with another tab

Cookie Confidentiality and Integrity
cookies only accessed by tabs of same domain

Address Bar Integrity and Correctness
address bar accurate, only modified by user action

Quark Kernel: Code, Spec,

Quark Kernel: Code, Spec,

Prove kernel code satisfies sec props

by induction on traces Quark can produce

Quark Kernel: Code, Spec,

Prove kernel code satisfies sec props

by induction on traces Quark can produce

+ ?

induction hypothesis:
trace valid up to this point

proof obligation:
still valid after step?

Quark Kernel: Code, Spec,

Prove kernel code satisfies sec props

by induction on traces Quark can produce

induction hypothesis:
trace valid up to this point

Quark Kernel: Code, Spec,

+ ?

induction hypothesis:
trace valid up to this point

proof obligation:
still valid after step?
Proceed by case analysis on kstep ()
what syscalls can be appended to trace?
will they still satisfy all security properties?

prove each case interactively in proof assistant

()

Quark Kernel: Code, Spec,

Proving required diverse range of tools
monads encoding /0 in functional language
Hoare logic reasoning about imperative programs
op. semantics defining correctness of Quark kernel

linear logic proving resources created / destroyed

YNot

[Naneveski et al. ICFP 08]

Formally Verified Browser!

Quark Web Browser Kernel

| cs.washington.edu | central-cinema.com

= =

“ & % e . - ?
& A L8 - ~— - 5 - -
Ny ol A a ¥
D ¥ v G~ = - - are
e Rk e L e . B R
1> bing I - -
: (e R - . - 1
- é-‘f\ b s S Ly » O = ¢
“" * ow e . 2 . e o
o &0 T N

’
b
P
-
T . 2

a¥elo Jok

ask Tallest water slic

Quark Kernel: Code, Spec, Proof

Key Insight: FSV Effective

Guarantee sec props for browser
Use state-of-the-art components

Only prove simple browser kernel

Extending Quark

Filesystem access, sound, history
could be implemented w/out major redesign

Finer grained resource accesses
support mashups and plugins

Liveness properties
no blocking, kernel eventually services all requests

Trusted Computing Base Quark Development Effort

Infrastructure we assume correct
bugs here can invalidate our formal guarantees

150 lines of
e Statement of security properties 900 lines of
Coq (soundness, proof checker) .
4,500 lines of proofs
Eventually OCaml [VeriML] 1,000,000 lines of WebKit
: Tab Sandbox [RockSalt]
Verified

Operating System [selL4]

[active research]

Quark Development Effort Mitigating the Burden of Proof

i week] |: Scaling proofs to critical infrastructure
900 lines of Formal shim verification for large apps
4,500 lines of proofs => QUARK: browser with security guarantees
Y N] 2: Evolving formally verified systems

Reflex DSL exploits domain for proof auto

Mitigating the Burden of Proof Struggle Against Formality Inertia

Adding cookies to Quark quite difficult

|: Scaling proofs to critical infrastructure all the pieces already there, still took over a month
Formal shim verification for large apps Proof updates repetitive and shallow
QUARK: browser with security guarantees sensitive proof scripts, changes not mechanical

2: Evolving formally verified systems

> Reflex DSL exploits domain for proof auto

INVD_SIZE PAYREST) erest b))) fds end

z PAYO, PAYREST)) _d -> Prop) with

S ENVD_SIZE) (PAYO, PAYREST)) (e0, erest) b))) fds end
=>

et.In (comp_fd (projTl1 (eval _base_term (envd:=existT _ (
match EQ in _ = _ vi return base_term _ _ vi with Logic.eq refl =
Var (existT vcdesc' (S ENVD_SIZE) (PAYO, PAYREST)) (Some i) end

| pesc d => _ | Comp ¢ => _ end (Logic.eq refl _)

Division of Labor (o scale) Division of Labor

Spec
Code

Ideal?

Proof L

Division of Labor

Spec just application
Code specific bits

Division of Labor

Spec
Spec
Code —» | DSL Code

Proof

Division of Labor

Spec

Spec ?
Code —> . Code

Proof

Division of Labor

Spec
Spec
Code —» | DSL Code

Easier to implement,
verify, and maintain

Proof

Does not demand
verification expertise

Reflex:a DSL for Reactive Systems

Exploit structure of app domain
kernel based archs, well suited to FSV design

(.]
e.g. tabs, cookie managers
Components . = d g

Messages = ...

\L e.g. GetCookie, MouseClick]

Reflex:a DSL for Reactive Systems

Exploit structure of app domain

kernel based archs, well suited to FSV design

Provide expressive spec language

subset of LTL and non-interference properties

cookie

forall d c, &grity
[Recv (Tab(d) , CookieSet(c))]
Enables

[Send (CookieMgr (d) , CookieSet(c))]

Reflex:a DSL for Reactive Systems

Exploit structure of app domain
kernel based archs, well suited to FSV design

Components = ...

Messages =S Loo when component C
sends message M ...

Handlers:

When C sends M:

... react by:

updating state

When C’ loop free!

accessing resources

sending messages
J

Reflex:a DSL for Reactive Systems

Exploit structure of app domain
kernel based archs, well suited to FSV design

Provide expressive spec language

subset of LTL and non-interference properties

Auto prove user-provided specs

exploit domain, ensure all traces match spec

Counterexample-driven search discovers invariants.

Reflex:a DSL for Reactive Systems Reflex: Evaluation

[auto prove non-interference]_
. Web Domains do not interfere,
Reﬂex EffeCtlve: browser Cookie integrity, ...

Prototype sshd, browser, httpd

SSH No PTY access before authentication,
server At most 3 authentication attempts, ...
Specify basic access controls
l auto prove non-local props
) Web Clients only spawned after successful login,
Auto prove user—prowded Specs server File requests guarded by access control, ...

[Auto verified 33 properties (80% in < 2 minutes)]

Reflex: Development Effort Mitigating the Burden of Proof

Reﬂ ex: < Many reactive systems
/7500 lines of Coq

|: Scaling proofs to critical infrastructure

Formal shim verification for large apps
Web browser | SSH server Web server

QUARK: browser with security guarantees

Quark Web browser : 2: Evolving formally verified systems
5500 lines of Coq)\ Single reactive system ‘ => Reflex DSL exploits domain for proof auto

Double Trouble
x = 0.1 + 0.2; 5
if (x 1= 0.3) (-b)—y/b" 4 (@)

printf(“wat.\n"); 2-a

MPFR

AND NOW ‘FOR
SOMETHING
COMPLETELY

DIFFERENT

HEY! GET BACK
TO WORK!

his

Futz Analyze

|.ess Double Trouble Neutron Beams UW Medicine

SCHOOL OF MEDICINE

- I |
-« —_— 1F YOU NEED ACCESS,
= - SEE ENGINEERING |
E _— STAFE IN NNI43E i
g DO NOT F
PLACE ANY THINMG
E ON TOP OF THE & e
L5 T Y
100%
.
—
2 75%
—)
. z
Y E 50%
. b4
—_—— ®
B —Y 25
_—
t t t t t }
o } " }
0 8 16 24 32 40 48 56 64 012 4 6 8 10 12 14 16 18 20 2 24

Casio overhead (ratio)

Neutron Beams UW Medicine

SCHOOL OF MEDICINE

& https://news ycombinator.com C r@

l 2. a Writing an nginx authentication module in Lua and Go

4 Code & Conquer: A War Game for Coders

4. a Proposal to Change the Default TLS Ciphersuites Offered by Browsers
5 4 The backlash against running firms like progressive schools has begun
» Darkness
4 Big Data and the Soviet Ghosts
8. a Startup Ideas Every Nerd Has (That Never Work)
3. 4 GCP - cp with a progress bar

» Doing Good in the Addiction Economy (

Achievement unlocked

Thank You!

Goal: mitigate formality inertia
address scaling and evolving formally verified systems

| . Extend verification frontier

develop techniques to verify critical “pinch points”

2. Make verification accessible
equip domain experts with effective tools

[not optimized M + socket (same origin) [0 + socket (whitelist) ® + cookie cache

w H

Load Time (Normalized to WebKit)
N

q
—

!r (AR

A
¢ & & ¢

Verifying Optimizations Verifying Optimizations

Rich compiler correctness history:
McCarthy 67, Samet 75, Cousot 77, ...

Already solved?

Compiler Bugs Found \
GCC 122 /I many
<_ optimization
LLVM 18I 17 bugs

optimizations

CompCert
lacks many
[Yang et al. PLDI 17]

Verifying Optimizations

=

CompCert

IQ 1
»

Verifying Optimizations

=

=>

Asm

C =

Verifying Optimizations

4

p
Proof original and opt code equivalent.

Construct bisimulation relation:

\

N

CompCert

i~

-
Proof original and opt code equivalent.

.

N

CompCert

a >
— >

Verifying Optimizations

Asm

p
Proof original and opt code equivalent.

Constru| if orig and opt in]?tion:
J =5 P equal states
.----

—>

=) Asm)

C =

)

.

N

CompCert

> »
m— >

j=/sm]

Verifying Optimizations

Constru| if orig and opt in fition:
- equal states

@

-

and orig prog can

p
Proof original and opt code equivalent.

N

,L//”

take some action J

CompCert

-

Verifying Optimizations

Verifying Optimizations

-
Proof original and opt code equivalent.

Construct bisimulation relation:

N

-

® T

P
--®

>]

e<+—0 T

then opt prog can
take same action to
another equal state

.

CompCert

Asm

Clm ¥~

Construct bisimulation relation:

p
Proof original and opt code equivalent.

N

-

P
--o

=

o<+—0@ T

oc—e T

=
I [implies: anything orig]

can do, opt can do too

\

J

CompCert

-

Asm

Verifying Optimizations

-

p
Proof original and opt code equivalent.

Construct bisimulation relation:

N

=) Asm)

P P P P P P P P
[=] TA el
. (| 9
L - also prove Inverse)
CompCert

Clo -

j=/sm]

Verifying Optimizations

-5

P P

STIAT

Proof original and opt code equivalent.

Construct bisimulation relation:

N

L

|
_(

together, implies md:stmgu:shablhty

CompCert

> 1
— - »

=

Verifying Optimizations

Construct bisimulation relation:

N C I
N A i

P
--®

=

e«—e@ T
o+—e@ T

.

Proof original and opt code equivalent.

N

.4—"0
«—i_

CompCert

1
]_4
= asm |

B

C|=

Verifying Optimizations

Formally Proved:

Rewrites locally correct
—> - bisimulation relation

|:| }l:l Rewrite

Local Proofs

Asm

Verifying Optimizations

Rewrite Rule >
PEC » g

Sl

Rewrite

Local Proofs

,
CompCert

XCert

CompCert
XCert - ?
S, S S S,
CompCert
a

jo=/sm]

Verifying Optimizations

PEC

Auto prove complex opts:
software pipelining
loop fusion / distribution

loop unswitching

\

Future Work

Generating and evaluating specs

techniques to ensure spec matches intuition

Even perfect program verification can
only establish that a program meets its
specification... Much of the essence of
building a program is in fact the
debugging of the specification.

Frederick P. Brooks, Jr.
No Silver Bullet

N\

Verifying Optimizations

Rewrite Rule

o

PEC
)

[P0

Rewrite

Local Proofs

-
CompCert

XCert

v

v

=) Asm

Quark Usability Browsers: Critical Infrastructure

Browsers: Critical Infrastructure Browsers: Critical Infrastructure

WELLS CHASE “-' ’i—' WELLS CHASE “" ’i—'
e ING [s TN G |) E¥TRADE

[2=y |
VISA E¥ TRADE VISA
il w-;/.r(} -t ‘ﬁ
N 5 ‘
; i ‘E
(%) el

&

A7

Browsers: Critical Infrastructure Browsers: Critical Infrastructure

Mas'@ WELLS CHASE ¢ ' * Mas'@ WELLS CHASE ¢ ' *
visa | [l [N G [0 exTRADE Visa | el [N G | 19) E¥TRADE

Hotmall : Hotmall

Browsers: Critical Infrastructure

Mas'@ WELLS CHASE“" *
visa| [ING S

Conference
Submissions

— ——
s "\,A.gv 7

Hotmall

