CSE 331 Software Design and Implementation

Lecture 19 GUI Events

The plan

User events and callbacks

- Event objects
- Event listeners
- Registering listeners to handle events

Anonymous inner classes and lambdas

Proper interaction between UI and program threads

Zach Tatlock / Winter 2016

Event-driven programming

Many applications are *event-driven* programs (most GUIs!):

- Program initializes itself, then enters an event loop
- Abstractly:

```
do {
```

```
e = getNextEvent();
```

```
process event e;
```

```
} while (e != quit);
```

Contrast with application- or algorithm-driven control where program expects input data in a particular order

 Typical of large non-GUI applications like web crawling, payroll, simulation, ...

Kinds of GUI events

Typical *events* handled by a GUI program:

- Mouse move/drag/click, button press, button release
- Keyboard: key press or release, sometimes with modifiers like shift/control/alt/etc.
- Finger tap or drag on a touchscreen
- Joystick, drawing tablet, other device inputs
- Window resize/minimize/restore/close
- Network activity or file I/O (start, done, error)
- Timer interrupt (including animations)

Events in Java AWT/Swing

Many (most?) of the GUI widgets can generate events (button clicks, menu picks, key press, etc.)

Handled using the Observer Pattern:

- Objects wishing to handle events register as observers with the objects that generates them
- When an event happens, appropriate method in each observer is called
- As expected, multiple observers can watch for and be notified of an event generated by an object

Event objects

- A Java GUI event is represented by an *event object*
 - Superclass is AWTEvent
 - Some subclasses:
 ActionEvent GUI-button press
 KeyEvent keyboard
 MouseEvent mouse move/drag/click/button

Event objects contain information about the event

- UI object that triggered the event
- Other information depending on event. Examples:
 ActionEvent text string from a button
 MouseEvent mouse coordinates

Event listeners

Event listeners must implement the proper interface: KeyListener, ActionListener, MouseListener (buttons), MouseMotionListener (move/drag), ...

 Or extend the appropriate library *abstract class* that provides empty implementations of the *interface* methods

When an event occurs, the appropriate method specified in the interface is called: actionPerformed, keyPressed, mouseClicked, mouseDragged, ...

An event object is passed as a parameter to the event listener method

Example: button

Create a JButton and add it to a window

Create an object that implements ActionListener

- (containing an actionPerformed method)

Add the listener object to the button's listeners

ButtonDemo1.java

Which button is which?

Q: A single button listener object often handles several buttons. How to tell which button generated the event?

A: an **ActionEvent** has a **getActionCommand** method that returns (for a button) the "action command" string

 Default is the button name (text), but usually better to set it to some string that will remain the same inside the program code even if the UI is changed or button name is translated. See button example.

Similar mechanisms to decode other events

Listener classes

ButtonDemo1.java defines a class that is used only once to create a listener for a single button

- Could have been a top-level class, but in this example it was an inner class since it wasn't needed elsewhere
- But why a full-scale class when all we want is to create a method to be called after a button click?
 - Alas, no lambdas (function closures) before Java 8

A more convenient shortcut: anonymous inner classes

Anonymous inner classes

Idea: define a new class directly in the **new** expression that creates an object of the (new) anonymous inner class

- Specify the superclass to be extended or interface to be implemented
- Override or implement methods needed in the anonymous class instance
- Can have methods, fields, etc., but not constructors
- But if it starts to get complex, use an ordinary class for clarity (nested inner class if appropriate)

Warning: ghastly syntax ahead

Example

Example

Program thread and UI thread

Recall that the program and user interface are running in separate, concurrent threads

All UI actions happen in the UI thread – *including the callbacks* like actionListener Or paintComponent, etc. defined in your code

After event handling and related work, call repaint() if paintComponent() needs to run. Don't try to draw anything from inside the event handler itself (as in *you must not do this!!!*)

Remember that **paintComponent** must be able to do its job by reading data that is available whenever the window manager calls it

Event handling and repainting

repaint()

paintComponent(q)

program

window manager (UI)

 actionPerformed (e)
 Remember: your program and the window manager are running concurrently:

Program thread User Interface thread

It's ok to call **repaint** from an event handler, but **never call paintComponent yourself** from either thread.

Working in the UI thread

Event handlers should not do a lot of work

- If the event handler does a lot of computing, the user interface will appear to freeze up
 - (Why?)
- If there's lots to do, the event handler should set a bit that the program thread will notice. Do the heavy work back in the program thread.
 - (Don't worry finding a path for campus maps should be fast enough to do in the UI thread)

ButtonDemo2.java

Synchronization issues?

Yes, there can be synchronization problems

- (cf. CSE332, CSE451, ...)

Not usually an issue in well-behaved programs, but can happen Some advice:

- Keep event handling short
- Call **repaint** when data is ready, not when partially updated
- Don't update data in the UI and program threads at the same time (particularly for complex data)
- Never call paintComponent directly
 - (Have we mentioned you should never ever call **paintComponent**? And don't create a new **Graphics** object either.)

If you are building industrial-strength UIs, learn more about threads and Swing and how to avoid potential problems

Larger example – bouncing balls

A hand-crafted MVC application. Origin is somewhere back in the CSE142/3 mists. Illustrates how some swing GUI components can be put to use.

Disclaimers:

- Not the very best design
- Unlikely to be directly appropriate for your project
- Use it for ideas and inspiration, and feel free to steal small bits if they *really* fit

Enjoy!