CSE 331 .)
Software Design and Implementation Hla I m JameS'

oy

Lecture 14
Generics 2

James Wilcox / Winter 2016

Big picture Generics and subtyping

» Last time: Generics intro

« Subtyping and Generics N““fber LiSt<N¥H;ber>
» Using bounds for more flexible subtyping Tnteger List<1nteger>
» Using wildcards for more convenient bounds

» Digression: Java’s unsoundness(es) . Integer is a subtype of Number

- Javarealities: type erasure
* IsList<Integer> a subtype of List<Number>?

» Use subtyping rules (stronger, weaker) to find out...

List<Number> and List<Integer>

interface List<T> {

boolean add(T elt); Number
T get(int index); T
} Integer

So type List<Number> has:
boolean add (Number elt);
Number get(int index);

So type List<Integer> has:
boolean add(Integer elt);
Integer get(int index);

Java subtyping is invariant with respect to generics
— Not covariant and not contravariant
— Neither List<Number> nor List<Integer> subtype of other

Read-only allows covariance

interface List<T> {
T get(int index); Number

} ﬁ
So type List<Number> has:

Number get(int index);

So type List<Integer> has:
Integer get(int index);

So covariant subtyping would be correct:
- List<Integer> a subtype of List<Number>

But Java does not analyze interface definitions like this
— Conservatively disallows this subtyping

Invariance of Java’s subtyping

If Type2 and Type3 are different,
then Typel<Type2> is not a subtype of Typel<Type3>

Previous example shows why:
— Observer method prevents “one direction”
— Mutator/producer method prevents “the other direction”

If our types have only observers or only mutators, then one
direction of subtyping would be sound

— But Java’s type system does not “notice this” so such
subtyping is never allowed in Java

Write-only allows contravariance

interface List<T> {
boolean add (T elt); Number

} ﬁ
So type List<Number> has:

boolean add(Number elt);

So type List<Integer> has:
boolean add(Integer elt);

So contravariant subtyping would be correct:
- List<Number> a subtype of List<Integer>

But Java does not analyze interface definitions like this
— Conservatively disallows this subtyping

Big picture

Last time: Generics intro

Subtyping and Generics

Using bounds for more flexible subtyping
Using wildcards for more convenientbounds
Digression: Java’s unsoundness(es)

Java realities: type erasure

Best type for addall

interface Set<E> {

// Adds all elements in c to this set
// (that are not already present)
void addAll (c);

What is the best type for addall’s parameter?

— Allow as many clients as possible...
— ... while allowing correct implementations

More verbose first

Now:

How to use type bounds to write reusable code despite
invariant subtyping

Elegant technique using generic methods
General guidelines for making code as reusable as possible

Then: Java wildcards

Essentially provide the same expressiveness

Less verbose: No need to declare type parameters that
would be used only once

Better style because Java programmers recognize how
wildcards are used for common idioms

» Easier to read (?) once you get used to it

Best type for addall

interface Set<E> {

//
//

Adds all elements in ¢ to this set
(that are not already present)

void addAll (c);

}

void addAll (Set<E> c);

Too restrictive:
— Does not let clients pass other collections, like List<E>
— Better: use a supertype interface with just what adda11 needs
— This is not related to invariant subtyping [yet]

Best type for addall

interface Set<E> {
// BAdds all elements in c to this set
// (that are not already present)
void addAll (c);

}

void addAll (Collection<E> c);

Too restrictive:
— Client cannot pass a List<Integer>to addAll for a
Set<Number>
— Should be okay because addall implementations only need to
read from ¢, not put elements in it
— This is the invariant-subtyping limitation

Revisit copy method

Earlier we saw this:

<T> void copyTo (List<T> dst, List<T> src) {
for (T t : src)
dst.add(t) ;
}

Now we can do this, which is more useful to clients:
<T1l, T2 extends T1> void copyTo (List<T1l> dst,
List<T2> src) {
for (T2 t : src)
dst.add(t) ;

Best type for addall

interface Set<E> {
// Adds all elements in c to this set
// (that are not already present)
void addAll (c);

}

<T extends E> void addAll (Collection<T> c);

The fix: A bounded generic type parameter
— Now client can pass a List<Integer> to addAll for a
Set<Number>
- addall implementations won’t know what element type T is,
but will know it is a subtype of E
+ So it cannot add anything to collection ¢ refers to
+ But this is enough to implement addall

Big picture

» Last time: Generics intro

» Subtyping and Generics

» Using bounds for more flexible subtyping

» Using wildcards for more convenient bounds
» Digression: Java’s unsoundness(es)

- Javarealities: type erasure

Wildcards Examples

Syntax: For a type-parameter instantiation (inside the <...>), can [Compare to earlier versions using explicit generic types]
write:
. interface Set<E> {
- ? extends Type, some unspecified subtype of Type void addAll (Collection<? extends E> c);
- ?,is shorthand for ? extends Object }

- ? super Type, some unspecified supertype of Type
— More flexible than void addAll (Collection<E> c);

— More idiomatic than (but semantically identical to)

A wildcard is essentially an anonymous type variable
y y yp <T extends E> void addAll (Collection<T> c) ;

— Each ? stands for some possibly-different unknown type

— Use a wildcard when you would use a type variable exactly
once, so no need to give it a name

Avoids declaring generic type variables

— Communicates to readers of your code that the type’s “identity”
is not needed anywhere else

More examples PECS: Producer Extends, Consumer Super

<T extends Comparable<T>> T max (Collection<T> c); Where should you insert wildcards?

— No change because T used more than once
Should you use extends or super or neither?

<T> void copyTo (List<? super T> dst, — Use ? extends T when you get values (from a producer)
List<? extends T> src); * No problem if it's a subtype
— Use ? super T when you put values (into a consumer)
Why this “works™? + No problem if it's a supertype
— Lower bound of T for where callee puts values — Use neither (just T, not 2) if you both get and put

— Upper bound of T for where callee gets values
— Callers get the subtyping they want
* Example: copy (numberList, integerList)

* Example: copy (stringList, stringList)] .
<T> void copyTo (List<? super T> dst,

List<? extends T> src);

More on lower bounds

+ As we've seen, lower-bound ? super T is useful for
“‘consumers”

* For upper-bound ? sub T, we could always rewrite it not to use
wildcards, but wildcards preferred style where they suffice

» But lower-bound is only available for wildcards in Java
— This does not parse:
<T super Foo> void m(Bar<T> x);

— No good reason for Java not to support such lower bounds
except designers decided it wasn’t useful enough to bother

Legal operations on wildcard types

Object o; Which of these is

Number n; legal?

Integer i; Jdei-add{c)5

PositiveInteger p; lei . add(n) ;
lei 1d (i) ;

List<? extends Integer> lei; Zdei-add{p)+

lei.add (null) ;
o = lei.get(0);
First, which of these is legal? n = lei.get(0);
tei—=—new Arraybist<object>{); 1 = lei.get(0);
] - — z I - I :11] : () ; ?—-&*ﬁw’—l—_ 3 r 7
lei = new ArrayList<Integer>();
lei = new ArraylList<PositiveInteger>();
lei = new ArraylList<NegativeInteger>() ;

? versus Object

? indicates a particular but unknown type
void printAll (List<?> 1lst) {..}

Difference between List<?> and List<Object>:
— Can instantiate ? with any type: Object, String, ...
- List<Object> is restrictive; wouldn't take a List<String>

Difference between List<Foo>and List<? extends Foo>
— Inlatter, element type is one unknown subtype of Foo

Example: List<? extends Animal> might store only
Giraffes but not Zebras

— Former allows anything that is a subtype of Foo in the same list
Example: List<Animal> could store Giraffes and Zebras

Legal operations on wildcard types

Object o; Which of these is

Number n; legal?

Integer i; A1si add(o) -

PositiveInteger p; Llei add{n)}+
lsi.add(i);

List<? super Integer> lsi; 1si.add(p)

lsi.add(null) ;
o = 1lsi.get(0);

First, which of these is legal? -n—=lsi.get(0)
lsi = new ArrayList<Object>; “i—=—3si-get(6)
lsi = new ArrayList<Number>; p=lsi.get (0}

lsi = new Arraylist<Integer>;
lei = ; List<PositiveIn)

Big picture

» Last time: Generics intro

» Subtyping and Generics

» Using bounds for more flexible subtyping

» Using wildcards for more convenient bounds
» Digression: Java’s unsoundness(es)

« Java realities: type erasure

Two unsoundnesses in Java

* One well-known and intentional
— array subtyping
* One discovered this week(!!!)

— a subtle interaction between generic
bounds and null

Type systems

* Prove absence of certain run-time errors
* In Java:
— methods/fields guaranteed to exist
« compare to, eg, python

— programs without casts don’t throw
ClassCastExceptions

» Type system unsoundif it fails to provide its
stated guarantees

Java arrays

We know how to use arrays:
— Declare an array holding Type elements: Type[]
— Getanelement: x[i]
— Setanelement x[1] = e;

Java included the syntax above because it's common and concise

But can reason about how it should work the same as this:
class Array<T> {

public T get(int i) { .. “magic” .. }

public T set(T newVal, int i) {.. “magic” ..}
}

So: If Typel is a subtype of Type2, how should Typel[] and
Type2[] be related??

Array subtyping

+ Given everything we have learned, if Typel is a subtype of
Type2, then Typel[] and Type2[] should be unrelated

— Invariant subtyping for generics
— Because arrays are mutable

* Butin Java, if Typel is a subtype of Type2, then Typel|[] is a

subtype of Type2[]

— Not true subtyping: the subtype does not support setting an
array index to hold a Type2

— Java (and C#) made this decision in pre-generics days
» Else cannot write reusable sorting routines, etc.
— Backwards compatibility means it’s here to stay

Big picture

» Last time: Generics intro

» Subtyping and Generics

» Using bounds for more flexible subtyping

» Using wildcards for more convenient bounds
» Digression: Java’s unsoundness(es)

« Java realities: type erasure

Demos

Type erasure

All generic types become type Object once compiled
— Big reason: backward compatibility with ancient byte code
— So, at run-time, all generic instantiations have the same type

List<String> 1lstl = new ArrayList<String>();
List<Integer> lst2 = new ArrayList<Integer>();
lstl.getClass() == lst2.getClass() // true

Cannot use instanceof to discover a type parameter

Collection<?> cs = new ArrayList<String>();
if (cs instanceof Collection<String>) { // illegal

Generics and casting

Casting to generic type results in an important warning
List<?> 1lg = new ArraylList<String>(); // ok
List<String> 1ls = (List<String>) 1lg; // warn

Compiler gives an unchecked warning, since this is something the
runtime system will not check for you

Usually, if you think you need to do this, you're wrong

— Most common real need is creating arrays with generic
element types (discussed shortly), when doing things like
implementing ArrayList.

Object can also be cast to any generic type ®
public static <T> T badCast(T t, Object o) {
return (T) o; // unchecked warning

}

The bottom-line

+ Java guarantees a List<String> variable always holds a
(subtype of) the raw type List

+ Java does not guarantee a List<String> variable always has
only String elements at run-time

— Will be true unless unchecked casts involving generics are
used

— Compiler inserts casts to/from Object for generics

* If these casts fail, hard-to-debug errors result: Often far
from where conceptual mistake occurred

+ So, two reasons not to ignore warnings:
— You're violating good style/design/subtyping/generics
— You're risking difficult debugging

Recall equals

class Node {

@Override
public boolean equals (Object obj) {
if (! (obj instanceof Node)) {
return false;
}
Node n = (Node) obj;
return this.data () .equals(n.data())

equals for a parameterized class

Erasure: Type
arguments do not
exist at runtime

class Node<E> {

@Override
public boolean equals (Object obj
if (! (obj instanceof Node<E>)) {
return false;

}
Node<E> n = (Node<E>) obj;

return this.data () .equals(n.data())

Equals for a parameterized class

class Node<E> {

@Override

public boolean equals (Object obj) { Works if the type of obj
if (! (obj instanceof Node<?>)) { | is Node<Elephant>
return false; or Node<String> or

}

Node<?> n = (Node<?>) obj;

return this.fifiiéi;ggals(n.data());
}

|Node<? extends Object>|

AN

|Node<Elephant>| |Node<String>|

- | Leave it to here to “do the
} right thing” if this and n
differ on element type

Equals for a parameterized class

class Node<E> {

@Override
More erasure: At run
time, do not know what
E is and will not be
checked, so don’t
indicate otherwise

public boolean equals (Object obj) {
if (! (obj instanceof Node<?>)) ({
return false;

}

Node<E> n = (Node<E>) obj;
return this.data () .equals(n.data())

Generics and arrays

public class Foo<T> {
private T aField; // ok
private T[] anArray; // ok

public Foo() ({
aField = new T():; // compile-time error
anArray = new T[10]; // compile-time error

You cannot create objects or arrays of a parameterized type
(Actual type info not available at runtime)

Necessary array cast

public class Foo<T> {
private T aField;
private T[] anArray;

@SuppressWarnings ("unchecked")
public Foo (T param) {
aField = param;
anArray = (T[]) (new Object[10]) ;
}
}

You can declare variables of type T, accept them as parameters,
return them, or create arrays by casting Object[]

— Casting to generic types is not type-safe, so it generates a
warning

— Rare to need an array of a generic type (e.g., use ArrayList)

Generics clarify your code

interface Map {

}

Object put(Object key, Object wvalue);

plus casts in client code
— possibility of run-time errors

interface Map<Key,Value> {

Value put(Key key, Value value) ;

Generics usually clarify the implementation
— But sometimes ugly: wildcards, arrays, instantiation
Generics always make the client code prettier and safer

Some final thoughts...

Tips when writing a generic class

Start by writing a concrete instantiation
— Get it correct (testing, reasoning, etc.)
— Consider writing a second concrete version

* Generalize it by adding type parameters
— Think about which types are the same or different
— The compiler will help you find errors

* As you gain experience, it will be easier to write generic code
from the start

