
CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2016

Java Graphics and GUIs
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Review: how to create a GUI

1. Create a JFrame (window)

2. Add components to it
– organize them on the screen using a layout manager

3. Add handlers on the components
– one for each event you want to respond to

2CSE331 Summer 2016

JPanel – a general-purpose container

In addition to all the uses we saw in lecture:

• Commonly used as a place for graphics

A particularly useful method:
– setPreferredSize(Dimension d)
– you may want to call this when using JPanel as a canvas

• (don’t usually want to otherwise)

3CSE331 Summer 2016

Graphics and drawing

What if we want to actually draw something?
– A map, an image, a path, …?

Answer: Override method paintComponent
– Components like JLabel provide a suitable paintComponent

that (in JLabel’s case) draws the label text
– Other components like JPanel typically inherit an empty
paintComponent and can override it to draw things

Note: As we’ll see, we override paintComponent but we don’t call it

4CSE331 Summer 2016

Example

SimplePaintMain.java

5CSE331 Summer 2016

Graphics methods

Many methods to draw various lines, shapes, etc., …

Can also draw images (pictures, etc.):
– In the program (not in paintComponent):

• Use AWT’s “Toolkit” to load an image:
Image pic =

Toolkit.getDefaultToolkit()
.getImage(file-name (with path));

– Then in paintComponent:
g.drawImage(pic, …);

6CSE331 Summer 2016

Graphics vs Graphics2D

Class Graphics was part of the original Java AWT
Has a procedural interface:

g.drawRect(…), g.fillOval(…), …

Swing introduced Graphics2D (extends Graphics)
– Added an object interface – create instances of Shape like
Line2D, Rectangle2D, etc., and add these to the
Graphics2D object

Actual parameter to paintComponent is always a Graphics2D
– Can always cast this parameter from Graphics to
Graphics2D

– Graphics2D supports both sets of graphics methods
– Use whichever you like for CSE 331

7CSE331 Summer 2016

So who calls paintComponent?
And when??
• Answer: the window manager calls paintComponent

whenever it wants!!! (a callback!)
– When the window is first made visible, and whenever after

that some or all of it needs to be repainted
• Corollary: paintComponent must always be ready to repaint

regardless of what else is going on
– You have no control over when or how often
– You must store enough information to repaint on demand

• If “you” want to redraw a window, call repaint() from the
program (not from paintComponent)
– Tells the window manager to schedule repainting
– Window manager will call paintComponent when it

decides to redraw (soon, but maybe not right away)
– Window manager may combine several quick repaint()

requests and call paintComponent() only once
8CSE331 Summer 2016

Example

FaceMain.java

9CSE331 Summer 2016

How repainting happens

10

program window manager (UI)
repaint()

paintComponent(g)

It’s worse than it looks!

Your program and the
window manager are
running concurrently:

• Program thread

• User Interface thread

Do not attempt to mess
around – follow the rules
and nobody gets hurt!Asynchronous

Callback

CSE331 Summer 2016

Crucial rules for painting
• Always override paintComponent(g) if you want to draw on a

component
• Always call super.paintComponent(g) first
• NEVER, EVER, EVER call paintComponent yourself
• Always paint the entire picture, from scratch
• Use paintComponent’s Graphics parameter to do all the

drawing. ONLY use it for that. Don’t copy it, try to replace it, or
mess with it. It is quick to anger.

• DON’T create new Graphics or Graphics2D objects

Fine print: Once you are a certified™ wizard, you may find reasons
to do things differently, but that requires deeper understanding of
the GUI library’s structure and specification

11CSE331 Summer 2016

What’s next – and not

You’re on your own to explore all the wonderful widgets in
Swing/AWT.

– Have fun!!
– (But don’t sink huge amounts of time into eye candy)

12CSE331 Summer 2016

Reminder: UI thread

Recall that sometimes the program has additional threads, e.g.:
– one thread is waiting for network data (“the network thread”)
– another thread is displaying the UI (”the UI thread”)

All UI actions happen in the UI thread – including callbacks like
actionListener or paintComponent, etc. defined in your code

After event handling and related work, call repaint() if
paintComponent() needs to run. Don’t try to draw anything from
inside the event handler itself (as in you must not do this!!!)

Remember that paintComponent must be able to do its job
whenever the window manager calls it – so any data it needs to
render must be prepared in advance

CSE331 Summer 2016 13

Event handling and repainting

14

program window manager (UI)

repaint()

paintComponent(g)

Remember: your program
and the window manager
are running concurrently:

• Program thread
• User Interface thread

It’s ok to call repaint
from an event handler, but
never call
paintComponent
yourself from either thread.

actionPerformed(e)

CSE331 Summer 2016

Synchronization issues?
Yes, there can be synchronization problems

– (cf. CSE332, CSE451, CSE452, …)
Not generally an issue in well-behaved programs, but can happen
Advice:

– Keep event handling short
– Call repaint when data is ready, not when only partially

updated
– Don’t update data in the UI and program threads at the same

time (particularly for complex data)
– Never call paintComponent directly

• (Have we mentioned you should never ever call
paintComponent? And don’t create a new Graphics
object either.)

If you are building industrial-strength UIs, learn more about threads
and Swing and how to avoid potential problems (Swing tutorial, …)

15CSE331 Summer 2016

Larger example – bouncing balls

A hand-crafted MVC application. Origin is somewhere back in the
CSE142/3 mists. Illustrates how some swing GUI components can
be put to use.

Disclaimers:
– Not the very best design (maybe not even particularly good)
– Unlikely to be directly appropriate for your project
– Use it for ideas and inspiration, and feel free to steal small

bits if they really fit

Enjoy!

16CSE331 Summer 2016

