
Section 5:
HW6 and Midterm
Slides by Vinod Rathnam and Geoffrey Liu

(with material from Alex Mariakakis,
Kellen Donohue, David Mailhot, and Hal Perkins)

Breadth-First Search (BFS)

 Often used for discovering connectivity

 Calculates the shortest path if and only if all edges have same positive or no weight

 Depth-first search (DFS) is commonly mentioned with BFS

 BFS looks “wide”, DFS looks “deep”

 Can also be used for discovery, but not the shortest path

BFS Pseudocode

public boolean find(Node start, Node end) {

 put start node in a queue

 while (queue is not empty) {

 pop node N off queue

 if (N is goal)

 return true;

 else {

 for each node O that is child of N

 push O onto queue

 }

 }

 return false;

}

Breadth-First Search

START: Starting at A
Q: <A> Goal: Fully explore
Pop: A, Q: <>
Q: <B, C>
Pop: B, Q: <C>
Q: <C>
Pop: C, Q: <C>
Q: <>
DONE

A

B C

Breadth-First Search with Cycle

START: Starting at A
Q: <A> Goal: Fully Explore
Pop: A, Q: <>
Q:
Pop: B, Q: <>
Q: <C>
Pop: C, Q: <>
Q: <A>
NEVER DONE

A

B C

BFS Pseudocode

public boolean find(Node start, Node end) {

 put start node in a queue

 while (queue is not empty) {

 pop node N off queue

 mark node N as visited

 if (N is goal)

 return true;

 else {

 for each node O that is child of N

 if O is not marked visited

 push O onto queue

 }

 }

 return false;

}
Mark the node as visited!

Breadth-First Search

Q: <>

A

B

C D

E

Breadth-First Search

Q: <>
Q: <A>

A

B

C D

E

Breadth-First Search

Q: <>
Q: <A>
Q: <> A

E

B

D C

Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>

A

C

E

B

D

Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>
Q: <C ,D>

A

C D

E

B

Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>
Q: <C ,D>
Q: <D>

A

C D

B

E

Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>
Q: <C ,D>
Q: <D>
Q: <D, E>

A

C D

E

B

Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>
Q: <C ,D>
Q: <D>
Q: <D, E>
Q: <E>

A

C D

E

B

Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>
Q: <C ,D>
Q: <D>
Q: <D, E>
Q: <E>
DONE

A

C D

E

B

Shortest Paths with BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D

E

From Node B

A

B

C D

E

1

1

1

1 1

1

1

Shortest path to D? to E?
What are the costs?

Shortest Paths with BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D <B,D> 1

E <B,D,E> 2

From Node B

A

B

C D

E

1

1

1

1 1

1

1

Shortest Paths with Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D

E

From Node B
2

100

2

6 2

3

100

Weights are not the same!
Are the paths?

Shortest Paths with Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D <B,A,C,D> 7

E <B,A,C,E> 7

From Node B
2

100

2

6 2

3

100

Midterm review

Midterm topics

Reasoning about code Identity & equality

Specification vs. Implementation Testing

Abstract Data Types (ADTs)

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

 {_______________}

 z = x + y;

 {_______________}

 y = z – 3;

 {x > y}

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

 {_______________}

 z = x + y;

 {x > z – 3}

 y = z – 3;

 {x > y}

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

 {x > x + y – 3 => y < 3}

 z = x + y;

 {x > z – 3}

 y = z – 3;

 {x > y}

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

 {_______________}

 p = a + b;

 {_______________}

 q = a - b;

 {p + q = 42}

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

 {_______________}

 p = a + b;

 {p + a - b = 42}

 q = a - b;

 {p + q = 42}

Reasoning about code 1
Using backwards reasoning, find the weakest precondition for each sequence of statements
and postcondition below. Insert appropriate assertions in each blank line. You should simplify
your answers if possible.

 {a + b + a – b = 42 ⇒ a = 21}

 p = a + b;

 {p + a - b = 42}

 q = a - b;

 {p + q = 42}

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

I. void withdraw(int amount) {
 balance -= amount;
}

Another way to ask the question:

If the client does not know the
implementation, will the method
do what the client expects it to
do based on the specification?

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

I. void withdraw(int amount) {
 balance -= amount;
}

✔ does exactly what the spec says

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

I. void withdraw(int amount) {
 balance -= amount;
}

✔ does exactly what the spec says

✔ If the client follows the @requires
precondition, the code will execute as expected

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

I. void withdraw(int amount) {
 balance -= amount;
}

✔ does exactly what the spec says

✔ If the client follows the @requires
precondition, the code will execute as expected

✘ Method never throws an exception

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

II. void withdraw(int amount) {
 if (balance >= amount) balance -= amount;
}

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

II. void withdraw(int amount) {
 if (balance >= amount) balance -= amount;
}

✘ balance does not always decrease

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

II. void withdraw(int amount) {
 if (balance >= amount) balance -= amount;
}

✘ balance does not always decrease

✔ If the client follows the @requires
precondition, the code will execute as expected

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

II. void withdraw(int amount) {
 if (balance >= amount) balance -= amount;
}

✘ balance does not always decrease

✔ If the client follows the @requires
precondition, the code will execute as expected

✘ Method never throws an exception

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

III.void withdraw(int amount) {
 if (amount < 0) throw new IllegalArgumentException();
 balance -= amount;
}

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

III.void withdraw(int amount) {
 if (amount < 0) throw new IllegalArgumentException();
 balance -= amount;
}

✘ balance does not always decrease

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

III.void withdraw(int amount) {
 if (amount < 0) throw new IllegalArgumentException();
 balance -= amount;
}

✘ balance does not always decrease

✔ If the client follows the @requires
precondition, the code will execute as expected

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

III.void withdraw(int amount) {
 if (amount < 0) throw new IllegalArgumentException();
 balance -= amount;
}

✘ balance does not always decrease

✔ If the client follows the @requires
precondition, the code will execute as expected

✘ Method throws wrong exception for wrong reason

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
}

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
}

✘ balance does not always decrease

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
}

✘ balance does not always decrease

✔ If the client follows the @requires
precondition, the code will execute as expected

Specification vs. Implementation
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance
@effects decreases balance by amount

C. @throws InsufficientFundsException
 if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

IV. void withdraw(int amount) throws InsufficientFundsException {
 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
}

✘ balance does not always decrease

✔ If the client follows the @requires
precondition, the code will execute as expected

✔ Method does what the spec says

Specifications 2
/**
 * An IntPoly is an immutable, integer-valued polynomial
 * with integer coefficients. A typical IntPoly value
 * is a_0 + a_1*x + a_2*x^2 + ... + a_n*x_n. An IntPoly
 * with degree n has coefficent a_n != 0, except that the
 * zero polynomial is represented as a polynomial of
 * degree 0 and a_0 = 0 in that case.
 */

public class IntPoly {
 int a[];
 // AF(this) = a has n+1 entries, and for each entry,
 // a[i] = coefficient a_i of the polynomial.
}

Specifications 2
/**
 * Return a new IntPoly that is the sum of this and other
 * @requires
 * @modifies
 * @effects
 * @return
 * @throws
 */
public IntPoly add(IntPoly other)

Specifications 2
/**
 * Return a new IntPoly that is the sum of this and other
 * @requires other != null
 * @modifies none
 * @effects none
 * @return a new IntPoly representing the sum of this and other
 * @throws none
 */
public IntPoly add(IntPoly other)

Representation invariants
One of your colleagues is worried that this creates a potential representation exposure problem. Another colleague
says there’s no problem since an IntPoly is immutable. Is there a problem? Give a brief justification for your
answer.

public class IntPoly {
 int a[];
 // AF(this) = a has n+1 entries, and for each entry,
 // a[i] = coefficient a_i of the polynomial.

 // Return the coefficients of this IntPoly
 public int[] getCoeffs() {
 return a;
 }
}

Representation invariants
One of your colleagues is worried that this creates a potential representation exposure problem. Another colleague
says there’s no problem since an IntPoly is immutable. Is there a problem? Give a brief justification for your
answer.

public class IntPoly {
 int a[];
 // AF(this) = a has n+1 entries, and for each entry,
 // a[i] = coefficient a_i of the polynomial.

 // Return the coefficients of this IntPoly
 public int[] getCoeffs() {
 return a;
 }
}

The return value is a reference to the same coefficient
array stored in the IntPoly and the client code could
alter those coefficients.

Representation invariants
If there is a representation exposure problem, give a new or repaired implementation of getCoeffs that fixes the
problem but still returns the coefficients of the IntPoly to the client. If it saves time you can give a precise
description of the changes needed instead of writing the detailed Java code.

public class IntPoly {
 int a[];
 // AF(this) = a has n+1 entries, and for each entry,
 // a[i] = coefficient a_i of the polynomial.

 // Return the coefficients of this IntPoly
 public int[] getCoeffs() {
 return a;
 }
}

Representation invariants
If there is a representation exposure problem, give a new or repaired implementation of getCoeffs that fixes the
problem but still returns the coefficients of the IntPoly to the client. If it saves time you can give a precise
description of the changes needed instead of writing the detailed Java code.

public int[] getCoeffs() {
 int[] copyA = new int[a.length];
 for (int i = 0; i < copyA.length; i++) {
 copyA[i] = a[i]
 }
 return copyA
}

Representation invariants
If there is a representation exposure problem, give a new or repaired implementation of getCoeffs that fixes the
problem but still returns the coefficients of the IntPoly to the client. If it saves time you can give a precise
description of the changes needed instead of writing the detailed Java code.

public int[] getCoeffs() {
 int[] copyA = new int[a.length];
 for (int i = 0; i < copyA.length; i++) {
 copyA[i] = a[i]
 }
 return copyA
}

1. Make a copy
2. Return the copy

Representation invariants
If there is a representation exposure problem, give a new or repaired implementation of getCoeffs that fixes the
problem but still returns the coefficients of the IntPoly to the client. If it saves time you can give a precise
description of the changes needed instead of writing the detailed Java code.

public int[] getCoeffs() {
 int[] copyA = new int[a.length];
 for (int i = 0; i < copyA.length; i++) {
 copyA[i] = a[i]
 }
 return copyA
}

1. Make a copy
2. Return the copy

Alternatively, we can just use…

Arrays.copyOf(a, a.length)

Reasoning about code 2
We would like to add a method to this class that evaluates the IntPoly at a particular value x. In other
words, given a value x, the method valueAt(x) should return a0 + a1x + a2x2 + ... + anxn, where a0
through an are the coefficients of this IntPoly.

For this problem, develop an implementation of this method and prove that your implementation is
correct.

(see starter code on next slide)

Reasoning about code 2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {_____}
 while (k != n) {
 {_____}
 xk = xk * x;
 {_____}
 val = val + a[k+1]*xk;
 {_____}
 k = k + 1;
 {_____}
 }
 {_____}
 return val;
}

Reasoning about code 2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
 while (k != n) {
 {_____}
 xk = xk * x;
 {_____}
 val = val + a[k+1]*xk;
 {_____}
 k = k + 1;
 {_____}
 }
 {_____}
 return val;
}

This should come with the code…

Reasoning about code 2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {_____}
 val = val + a[k+1]*xk;
 {_____}
 k = k + 1;
 {_____}
 }
 {_____}
 return val;
}

Reasoning about code 2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
 val = val + a[k+1]*xk;
 {_____}
 k = k + 1;
 {_____}
 }
 {_____}
 return val;
}

Reasoning about code 2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
 val = val + a[k+1]*xk;
 {xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k+1]*x^(k+1)}
 k = k + 1;
 {_____}
 }
 {_____}
 return val;
}

Reasoning about code 2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
 val = val + a[k+1]*xk;
 {xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k+1]*x^(k+1)}
 k = k + 1;
 {inv}
 }
 {_____}
 return val;
}

Reasoning about code 2
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
 val = val + a[k+1]*xk;
 {xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k+1]*x^(k+1)}
 k = k + 1;
 {inv}
 }
 {inv && k = n ⇒ val = a[0] + a[1]*x + ... + a[n]*x^n}
 return val;
}

Equality
Suppose we are defining a class StockItem to represent items stocked by an online grocery store. Here
is the start of the class definition, including the class name and instance variables:

public class StockItem {
 String name;
 String size;
 String description;
 int quantity;

 /* Construct a new StockItem */
 public StockItem(...);
}

Equality
A summer intern was asked to implement an equals function for this class that treats two StockItem objects as
equal if their name and size fields match. Here’s the result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) {
 return name.equals(other.name) && size.equals(other.size);
}

This equals method seems to work sometimes but not always. Give an example showing a situation when it fails.

Equality
A summer intern was asked to implement an equals function for this class that treats two StockItem objects as
equal if their name and size fields match. Here’s the result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) {
 return name.equals(other.name) && size.equals(other.size);
}

This equals method seems to work sometimes but not always. Give an example showing a situation when it fails.

Object s1 = new StockItem("thing", 1, "stuff", 1);
Object s2 = new StockItem("thing", 1, "stuff", 1);
System.out.println(s1.equals(s2));

Equality
A summer intern was asked to implement an equals function for this class that treats two StockItem objects as
equal if their name and size fields match. Here’s the result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) { // equals is overloaded, not overridden
 return name.equals(other.name) && size.equals(other.size);
}

This equals method seems to work sometimes but not always. Give an example showing a situation when it fails.

Object s1 = new StockItem("thing", 1, "stuff", 1);
Object s2 = new StockItem("thing", 1, "stuff", 1);
System.out.println(s1.equals(s2));

Equality
Show how you would fix the equals method so it works properly (StockItems are equal if their
names and sizes are equal)

/** return true if the name and size fields match */

Equality
Show how you would fix the equals method so it works properly (StockItems are equal if their
names and sizes are equal)

/** return true if the name and size fields match */
@Override
public boolean equals(Object o) {
 if (!(o instanceof StockItem)) {
 return false;
 }
 StockItem other = (StockItem) o;
 return name.equals(other.name) && size.equals(other.size);
}

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode();

2. return name.hashCode() * 17 + size.hashCode();

3. return name.hashCode() * 17 + quantity;

4. return quantity;

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode(); ✔ legal

2. return name.hashCode() * 17 + size.hashCode();

3. return name.hashCode() * 17 + quantity;

4. return quantity;

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode(); ✔ legal

2. return name.hashCode() * 17 + size.hashCode(); ✔ legal

3. return name.hashCode() * 17 + quantity;

4. return quantity;

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode(); ✔ legal

2. return name.hashCode() * 17 + size.hashCode(); ✔ legal

3. return name.hashCode() * 17 + quantity; ✘ illegal!

4. return quantity;

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode(); ✔ legal

2. return name.hashCode() * 17 + size.hashCode(); ✔ legal

3. return name.hashCode() * 17 + quantity; ✘ illegal!

4. return quantity; ✘ illegal!

hashCode
Which of the following implementations of hashCode() for the StockItem class are legal:

1. return name.hashCode(); ✔ legal

2. return name.hashCode() * 17 + size.hashCode(); ✔ legal

3. return name.hashCode() * 17 + quantity; ✘ illegal!

4. return quantity; ✘ illegal!

The equals method does
not care about quantity

hashCode
Which implementation do you prefer?

public int hashCode() {
 return name.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + size.hashCode();
}

hashCode
Which implementation do you prefer?

public int hashCode() {
 return name.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + size.hashCode();
}

(ii) will likely do the best job since it takes into account both
the size and name fields. (i) is also legal but it gives the same
hashCode for StockItems that have different sizes as
long as they have the same name, so it doesn’t differentiate
between different StockItems as well as (ii).

