CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2016
Lecture 23 — Summary & Advice

(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)




Announcements

 Course evaluation:

« Final review material on the web site
— concepts that are fair game for the final
— questions from last 3 finals that | think are reasonable
* (that means ignore the questions | skipped)

CSE331 Summer 2016



Review from Lecture 1

CSE 331 Summer 2016



What is the goal of CSE 3317

In short: to help you become better programmers
Specifically, to teach you how to write code of
* higher quality

* Increased complexity

We will discuss fools and techniques to help with these

CSE 331 Summer 2016



What is high quality”?

Code is high quality when it is

1. Correct

— everything else is of secondary importance
2. Easy to change

— most work is making changes to existing systems
3. Easy to understand

— needed for 1 & 2 above

CSE 331 Summer 2016



How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
— e.g., type checking compiler
2. Inspection
— think through your code carefully
— have another person review your code

3. Testing
— usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%

— none of these can be left out
CSE 331 Summer 2016



How do we cope with complexity?

We tackle complexity with modularity

 split code into pieces that can be built independently
* each must be documented so others can use it
 also helps understandability and changeability

In summary, we want our code to be:
1. correct

2. easy to change

3. easy to understand

4. modular

CSE 331 Summer 2016



Scale makes everything harder

Modularity makes scale possible but it's still hard...
« Time to write N-line program grows faster than linear
— good estimate is O(N'-0%) [Boehm, ‘81]
* Bugs grow like ©(N log N) [Jones, “12']
— 10% are errors are btw modules [Seaman, ‘08]
— corner cases are more important with more users
« Comm. costs dominate schedules [Brooks, “75]

Corollary: quality must be even higher, per line, in
order to achieve overall quality in a /large program

CSE 331 Summer 2016




What we will cover in CSE 331

* Everything we cover relates to the 4 goals
« We'll use Java but the principles apply in any setting

Correctness Changeability

1. Tools « specifications

- Git, Eclipse, JUnit, Javadoc, ... * ADTs

« Java libraries: equality & hashing

« Adv. Java: generics, assertions, ...

« debugging
2. Inspection

* reasoning about code

» specifications Modularity

Understandability
« specifications
« Adv. Java: exceptions
« subtypes

3. Testing o « module design & design patterns
test design « listeners & callbacks
« coverage

« event-driven programming, MVC, GUIs

CSE 331 Summer 2016 9



Advice

CSE 331 Summer 2016

10



Write Less Code

The best way to reduce bugs is to write less code.
- more lines of code usually means more bugs

The best way to improve your productivity is to write less code.

- your time is valuable!
- don’t waste it on unnecessary work

CSE 331 Summer 2016

11



Promise as Little as Possible

|.e., make your method specifications as weak as possible

That means less work for you
- see the previous slide!
- don’t promise to solve problems you don’t actually have

That makes your code easier to change in the future
Exception: you can’t have preconditions in widely used libraries

- clients will try out your code on every input

- whatever you do becomes the specification no matter what
you say about it

CSE 331 Summer 2016 12



Limit the Use of Abstraction

Only introduce abstraction if it will pay for itself

Abstractions usually make certain kinds of changes easier

- e.g., interpreter vs procedural design patterns
- one makes it easier to add operations, the other to add types

- ADTs make it easy to change the data representation
- the latter is common when optimizing for efficiency

Adding abstraction is usually more work
- see the earlier slide!
- how likely is it you will need to change the representation?

Adding abstraction can make the code harder to understand

CSE 331 Summer 2016 13



Prefer Correctness to Efficiency

We are notoriously bad at guessing what will be inefficient

- if you guess wrong, you'll waste time optimizing
see the earlier slide!

On the other hand, we can be pretty certain that users won't like
it when the program crashes

First, make it correct. Then, find out what is slow and optimize it.

Example: copying mutable inputs and outputs
- you can remove these copies later if it turns out to be slow

CSE 331 Summer 2016

14



Don’t Trust Other Programmers

Write assertions to check preconditions on code they call
- they should read the comments carefully, but they won't

Avoid representation exposure so they can’t break your code.

Copy mutable inputs and outputs
- better yet, prefer immutable types

Don't let other programmers extend your classes

- relationship between sub- and super-class is often intimate
- either design for subclassing or make your class £inal

- prefer composition over inheritance

CSE 331 Summer 2016

15



Don’t Trust Yourself Either!

The first step is recognizing you have a problem...

You will make mistakes
- but you can stop those mistakes (bugs) from getting to users

Write assertions to check your assumptions

- if you can have mistakes in your code, you can have them in
your proofs of correctness as well

Write assertions to check that your loop invariants hold.

Write assertions to check that your representation invariants hold.

CSE 331 Summer 2016 16



Fail Fast

When you detect that something is wrong, just crash

This will make debugging much easier

- search from the failure to the bug is shorter if the failure
occurs close to the bug

This limits additional damage from the bug

- once we know there’s a mistake in our reasoning,
it's hard to know what else could go wrong

- it could be very bad...

CSE 331 Summer 2016

17



Write Tests before the Code

It's easier to have the energy for good testing beforehand
- finishing the code feels like crossing the finish line

Thinking through the tests often makes the code easier to write
- forces you to think through all the cases you have to handle

- helps you realize which cases are the same

Confirmation bias makes it hard to realize the cases you missed
after you’ve written the code

Then write more tests after
- add tests for any special cases you missed

CSE 331 Summer 2016 18



Test Code Should Be Obvious

If your tests are wrong, they’re not testing

For tests, correctness matters much more than anything else
- throw elegance and efficiency out the window

- throw changeability out the window (most of the time)

Any code that is not obviously correct needs its own tests

It's kind of fun to write brain-dead code
- take a break from style, efficiency, etc.

CSE 331 Summer 2016 19



Have Fun

Programming should be fun

You get to...
— create solely with the power of your imagination
— positively affects the lives of large numbers of people

CSE 331 Summer 2016

20



