
CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2016

Design Patterns, Part 2
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Announcements

•  Course evaluation: https://uw.iasystem.org/survey/163511

•  Email cse331-staff if you want your code demoed on Wed
–  can be anonymous if you prefer
–  you will need to get them a build by Tuesday night
–  tag the demo version “hw9-demo”
–  email the staff instructions on how to demo it

•  Final review material will be on the web site tonight (late)
–  concepts that are fair game for the final
–  questions from last 3 finals that I think are reasonable

•  (that means ignore the questions I skipped)

CSE331 Summer 2016 2

Review: Factories

Goal: want more flexible abstractions for what class to instantiate

Factory method
–  call a method (with better name) to create the object
–  method can do any computation and return any subtype

Factory object (also Builder)
–  Factory has factory methods for some type(s)
–  Builder has methods to describe object and then create it

•  e.g., GraphBuilder with addNode, addEdge, createGraph methods
Prototype

–  every object is a factory, can create more objects like itself
–  call clone to get a new object of same subtype as receiver

Dependency Injection
–  put choice of subclass in a file to avoid source-code changes

when decision changes (meh)

CSE331 Summer 2016 3

Sharing

Second weakness of constructors: they always return a new object

Singleton: only one object exists at runtime
–  factory method returns the same object every time
–  (we’ve seen this already)

Interning: only one object with a particular value exists at runtime
–  (with a particular abstract value)
–  factory method can return an existing object (not a new one)

CSE331 Summer 2016 4

Interning pattern

Reuse existing objects instead of creating new ones:

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

101-200
(Street-

NumberSet)

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

1-100
(Street-

NumberSet)

(Street-
Segment)

101-200
(Street-

NumberSet)

(Street-
Segment)

1-100
(Street-

NumberSet)

"Univ. Way"
(String)

"O2139"
(String)

StreetSegment
without string
interning

StreetSegment
with string
interning

CSE331 Summer 2016 5

Interning mechanism

•  Maintain a collection of all objects in use
•  If an object already appears, return that instead

–  (be careful in multi-threaded contexts)

 HashMap<String, String> segNames;
 String canonicalName(String n) {
 if (segNames.containsKey(n)) {
 return segNames.get(n);
 } else {
 segNames.put(n, n);
 return n;
 }
 }

•  Java builds this in for strings: String.intern()

Set supports
contains but not get

CSE331 Summer 2016

Why not Set<String> ?

6

Interning pattern

•  Benefits of interning:

1.  May compare with == instead of equals()
•  eliminates a source of common bugs!!

2.  May save space by creating fewer objects

•  but space is less and less likely to be a problem
•  also, interning can actually waste space if objects are not

cleaned up when no longer needed
–  there are additional techniques to fix that (“weak references”)

•  Sensible only for immutable objects

CSE331 Summer 2016 7

java.lang.Boolean
does not use the Interning pattern

public class Boolean {
 private final boolean value;

 // construct a new Boolean value
 public Boolean(boolean value) {
 this.value = value;
 }

 public static Boolean FALSE = new Boolean(false);
 public static Boolean TRUE = new Boolean(true);

 // factory method that uses interning
 public static Boolean valueOf(boolean value) {
 if (value) {
 return TRUE;
 } else {
 return FALSE;
 }
 }
} CSE331 Summer 2016 8

Recognition of the problem

Javadoc for Boolean constructor:
Allocates a Boolean object representing the value argument.
Note: It is rarely appropriate to use this constructor. Unless a new
instance is required, the static factory valueOf(boolean) is
generally a better choice. It is likely to yield significantly better
space and time performance.

Josh Bloch (JavaWorld, January 4, 2004):

The Boolean type should not have had public constructors.
There's really no great advantage to allow multiple trues or
multiple falses, and I've seen programs that produce millions of
trues and millions of falses, creating needless work for the
garbage collector.
So, in the case of immutables, I think factory methods are great.

CSE331 Summer 2016 9

GoF patterns: three categories

Creational Patterns are about the object-creation process
Factory Method, Abstract Factory, Singleton, Builder,
Prototype, …

Structural Patterns are about how objects/classes can be
combined

Adapter, Bridge, Composite, Decorator, Façade, Proxy, …

Behavioral Patterns are about communication among objects
Command, Interpreter, Iterator, Mediator, Observer, State,
Strategy, Chain of Responsibility, Visitor, Template Method, …

Green = ones we’ve seen already

CSE331 Summer 2016 10

Structural patterns: Wrappers

A wrapper translates between different interfaces
Wrappers are a thin veneer over an encapsulated class

–  modify the interface
–  extend behavior
–  restrict access

The encapsulated class does most of the work

Some wrappers have qualities of more than one of adapter,
decorator, and proxy

Pattern Functionality Interface
Adapter same different
Decorator different same
Proxy same same

11 CSE331 Summer 2016

Adapter

Real life example: adapter to go from US to UK power plugs
–  both interfaces do the same thing
–  but they have slightly interface expectations

Change an interface without changing functionality

–  rename a method
–  convert units
–  implement a method in terms of another

Example: angles passed in radians vs. degrees
Example: use “old” method names for legacy code

12 CSE331 Summer 2016

Adapter example: rectangles
Our code is using this Rectangle interface:

interface Rectangle {
 // grow or shrink this by the given factor
 void scale(float factor);
 // move to the left or right
 void translate(float x, float y);
}

But we want to use a library that has this class:

class JRectangle {
 void scaleWidth(float factor) { ... }
 void scaleHeight(float factor) { ... }
 void shift(float x, float y) { ... }
}

13 CSE331 Summer 2016

Adapter example: rectangles

Create an adapter that delegates to Rectangle:

class RectangleAdapter implements Rectangle {
 JRectangle rect;
 RectangleAdapter(JRectangle rect) {
 this.rect = rect;
 }

 void scale(float factor) {
 rect.scaleWidth(factor);
 rect.scaleHeight(factor);
 }

 void translate(float x, float y) {
 rect.shift(x, y);
 }
 ...
}

14 CSE331 Summer 2016

Adapters

•  This sort of thing happens a lot
–  unless two libraries were designed to work together,

they probably won’t fit together without an adapter

•  The example code uses delegation:
–  special case of composition where the outer object just

forwards calls on to one other object

•  Adapters can also remove methods

•  Adapters can also be written by subclassing
–  but then all the usual warnings about subclassing apply
if you override any methods of the superclass

–  your subclass could easily break when superclass changes
15 CSE331 Summer 2016

Decorator

•  Add functionality without breaking the interface:
1.  Add to existing methods to do something extra

•  satisfying a stronger specification
2.  Provide extra methods

•  Subclasses are often decorators
–  but not always: Java subtypes are not always true subtypes

16 CSE331 Summer 2016

Decorator example: Bordered windows

interface Window {
 // rectangle bounding the window
 Rectangle bounds();
 // draw this on the specified screen
 void draw(Screen s);
 ...
}

class WindowImpl implements Window {
 ...
}

17 CSE331 Summer 2016

Bordered window implementations
Via subclasssing:

class BorderedWindow1 extends WindowImpl {
 void draw(Screen s) {
 super.draw(s);
 bounds().draw(s);
 }
}
Via delegation:

class BorderedWindow2 implements Window {
 Window innerWindow;
 BorderedWindow2(Window innerWindow) {
 this.innerWindow = innerWindow;
 }
 void draw(Screen s) {
 innerWindow.draw(s);
 innerWindow.bounds().draw(s);
 }
}

Delegation permits multiple
borders on a window, or a
window that is both
bordered and shaded

18 CSE331 Summer 2016

A decorator can remove functionality

Remove functionality without changing the Java interface
–  no longer a true subtype, but sometimes that is necessary

Example: UnmodifiableList
–  What does it do about methods like add and put?

•  throws an exception
•  moves error checking from the compiler to runtime

–  like Java array subtypes are another example of this

Problem: UnmodifiableList is not a true subtype of List

Decoration via delegation can create a class with no Java
subtyping relationship, which is often desirable

•  Java subtypes that are not true subtypes are confusing
•  maybe necessary for UnmodifiableList though

 19 CSE331 Summer 2016

Proxy

•  Same interface and functionality as the wrapped class
–  so... uh... wait, what?

•  Control access to other objects

–  communication: manage network details when using a
remote object

–  locking: serialize access by multiple clients

–  security: permit access only if proper credentials

–  creation: object might not yet exist (creation is expensive)
•  hide latency when creating object
•  avoid work if object is never used

20 CSE331 Summer 2016

Composite pattern

•  Composite permits a client to manipulate either an atomic unit or
a collection of units in the same way
–  no need to “always know” if an object is a collection of

smaller objects or not

•  Good for dealing with “part-whole” relationships

•  Used by jQuery in JavaScript

•  An extended example…

21 CSE331 Summer 2016

Composite example: Bicycle

•  Bicycle
–  Wheel

•  Skewer
–  Lever
–  Body
– Cam
– Rod

•  Hub
•  Spokes
•  Nipples
•  Rim
•  Tape
•  Tube
•  Tire

–  Frame
–  Drivetrain
–  ...

22 CSE331 Summer 2016

Methods on components

abstract class BicycleComponent {
 int weight();
 float cost();
}
class Skewer extends BicycleComponent {
 float price;
 float cost() { return price; }
}
class Wheel extends BicycleComponent {
 float assemblyCost;
 Skewer skewer;
 Hub hub;
 ...
 float cost() {
 return assemblyCost + skewer.cost()
 + hub.cost() + ...;
 }
} 23 CSE331 Summer 2016

Composite example: Libraries

Library
Section (for a given genre)
 Shelf
 Volume
 Page
 Column
 Word
 Letter

interface Text {
 String getText();
}
class Page implements Text {
 String getText() {
 ... return concatenation of column texts ...
 }
}

24 CSE331 Summer 2016

Composite example: jQuery

•  jQuery provides a function $ that returns one or many objects
–  $(“#foo”) would return the object with ID “foo”

•  (or returns an empty collection if none exists)
–  $(“p”) wound return a collection of all P nodes

•  Calling a method on a jQuery object calls that method on all
objects in the collection:
–  if foo is a node with id “foo”, then
foo.hide() has the same effect as $(“foo”).hide()

–  $(“p”).hide() would hide all the P nodes

25 CSE331 Summer 2016

GoF patterns: three categories

Creational Patterns are about the object-creation process
Factory Method, Abstract Factory, Singleton, Builder,
Prototype, …

Structural Patterns are about how objects/classes can be
combined

Adapter, Bridge, Composite, Decorator, Façade, Proxy, …

Behavioral Patterns are about communication among objects
Command, Interpreter, Iterator, Mediator, Observer, State,
Strategy, Chain of Responsibility, Visitor, Template Method, …

Green = ones we’ve seen already

CSE331 Summer 2016 26

Traversing composites

•  Goal: perform operations on all parts of a composite

•  Idea is to generalize the notion of an iterator: process the
components in an order appropriate for the application

•  This is really important when writing a compilers
–  (doesn’t come up nearly as much elsewhere though)

•  Example: arithmetic expressions in Java
–  how do we represent, say, x=foo*b+c/d;
–  how do we traverse/process these expressions?

27 CSE331 Summer 2016

Representing Java code

x = foo * b + c / d;

28

x +

=

*

b foo

/

d c

CSE331 Summer 2016

Abstract syntax tree (AST) for Java code

class PlusOp extends Expression { // + operation
 Expression leftExp;
 Expression rightExp;
}
class VarRef extends Expression { // variable use
 String varname;
}
class EqualOp extends Expression { // test a==b;
 Expression leftExp; // left-hand side: a in a==b
 Expression rightExp; // right-hand side: b in a==b
}
class CondExpr extends Expression { // a?b:c
 Expression testExp;
 Expression thenExp;
 Expression elseExp;
}

29 CSE331 Summer 2016

Object model vs. type hierarchy

•  AST for a + b:

•  Class hierarchy for Expression:

30

(PlusOp)

a
(VarRef)

b
(VarRef)

Expression

PlusOp VarRef EqualOp CondExpr

CSE331 Summer 2016

Operations on abstract syntax trees
Need to write code for each entry in this table

•  Question: Should we group together the code for a particular
operation or the code for a particular expression?
–  That is, do we group the code into rows or columns?

•  Given an operation and an expression, how do we “find” the
proper piece of code?

31

 Types of Objects

CondExpr EqualOp

Operations
typecheck

print

CSE331 Summer 2016

Interpreter and procedural patterns

Interpreter: collects code for
similar objects, spreads
apart code for similar
operations
–  easy to add new types
–  hard to add operations
–  Composite pattern

Procedural: collects code for
similar operations, spreads
apart code for similar objects
–  easy to add operations
–  hard to add new types
–  Visitor pattern

CSE331 Summer 2016 32

(See CSE341 for an extended take on this question:
•  statically typed functional languages help with procedural
 whereas statically typed OO languages help with interpreter)

Interpreter pattern
Add a method to each class for each supported operation
abstract class Expression {
 ...
 Type typecheck();
 String print();
}
class EqualOp extends Expression {
 ...
 Type typecheck() { ... }
 String print() { ... }
}
class CondExpr extends Expression {
 ...
 Type typecheck() { ... }
 String print() { ... }
}

33

Dynamic dispatch chooses
the right implementation, for
a call like e.typeCheck()

Overall type-checker spread
across classes

 Objects

CondExpr EqualOp

typecheck

print

CSE331 Summer 2016

Procedural pattern

Create a class per operation, with a method per operand type

class Typecheck {
 Type typeCheckCondExpr(CondExpr e) {
 Type condType = typeCheckExpr(e.condition);
 Type thenType = typeCheckExpr(e.thenExpr);
 Type elseType = typeCheckExpr(e.elseExpr);
 if (condType.equals(BoolType) &&
 thenType.equals(elseType)))
 return thenType;
 else
 return ErrorType;
 }
 Type typeCheckEqualOp(EqualOp e) {
 ...
 }
} 34

How to invoke the right
method for an
expression e?

 Objects

CondExpr EqualOp

typecheck

 print

CSE331 Summer 2016

class Typecheck {
 ...
 Type typeCheckExpr(Expression e) {
 if (e instanceof PlusOp) {
 return typeCheckPlusOp((PlusOp)e);
 } else if (e instanceof VarRef) {
 return typeCheckVarRef((VarRef)e);
 } else if (e instanceof EqualOp) {
 return typeCheckEqualOp((EqualOp)e);
 } else if (e instanceof CondExpr) {
 return typeCheckCondExpr((CondExpr)e);
 } else ...
 ...
 }
}

Definition of typeCheckExpr
(using procedural pattern)

35

Maintaining this code is tedious and error-prone

•  No help from type-checker to get all the cases
(unlike in functional languages)

Cascaded if tests are likely to run slowly (in Java)

Need similar code for each operation
CSE331 Summer 2016

Visitor pattern:
A variant of the procedural pattern

•  Nodes (objects in the hierarchy) accept visitors for traversal
•  Visitors visit nodes (objects)

class SomeExpression extends Expression {
 void accept(Visitor v) {
 for each child of this node {
 child.accept(v);
 }
 v.visit(this);
 }
}
class SomeVisitor extends Visitor {
 void visit(SomeExpression n) {
 perform work on n
 }
}

36

n.accept(v) traverses the
structure rooted at n, performing
v's operation on each element of
the structure

CSE331 Summer 2016

Example: accepting visitors

CSE331 Summer 2016 37

class VarOp extends Expression {
 …
 void accept(Visitor v) {
 v.visit(this);
 }
class EqualsOp extends Expression {
 …
 void accept(Visitor v) {
 leftExp.accept(v);
 rightExp.accept(v);
 v.visit(this);
 }
}
class CondOp extends Expression {
 …
 void accept(Visitor v) {
 testExp.accept(v);
 thenExp.accept(v);
 elseExp.accept(v);
 v.visit(this);
 }
}

First visit all children

Then pass “self” back to visitor

The visitor has a visit method
for each kind of expression, thus
picking the right code for this kind
of expression

•  Overloading makes this
look more magical than it
is…

Lets clients provide unexpected
visitors

Sequence of calls to accept and visit

a.accept(v)
 b.accept(v)
 d.accept(v)
 v.visit(d)
 e.accept(v)
 v.visit(e)
 v.visit(b)
 c.accept(v)
 f.accept(v)
 v.visit(f)
 v.visit(c)
 v.visit(a)

Sequence of calls to visit: d, e, b, f, c, a

38

a

ed

cb

f

CSE331 Summer 2016

Example: Implementing visitors

CSE331 Summer 2016 39

class TypeCheckVisitor
implements Visitor {

 void visit(VarOp e) { … }
 void visit(EqualsOp e) { … }
 void visit(CondOp e) { … }
}

class PrintVisitor implements

Visitor {
 void visit(VarOp e) { … }
 void visit(EqualsOp e) { … }
 void visit(CondOp e) { … }
}

Now each operation has its
cases back together

And type-checker should tell us if
we fail to implement an abstract
method in Visitor

Again: overloading just a nicety

Again: An OOP workaround for
procedural pattern
•  Because language/type-

checker is not instance-of-test
friendly

