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Announcements 

•  Course evaluation: https://uw.iasystem.org/survey/163511 
–  we can’t see the results until the course is over 

•  HW9 is due next Wednesday at 11pm, but… 
–  (voluntary) demos during Wednesday lecture 
–  need to finish by Tuesday night to participate 

•  Last reading quiz is due tonight at 11pm 
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Graphics Example 1 

Flower.java 
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Graphics Example 2 

FlowerTimer.java 
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•  Easier to do the drawing work in a drawing program 
–  (if no timer) just save the drawing to an image 
–  draw the image in paintComponent 

FlowerImage.java 

Graphics Example 3 
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Example: Chat Client GUI 

•  We now can fully understand the chat client 
–  uses BorderLayout and a couple of nested panels 

•  one is a scrolling panel for the message area 
–  uses two event loops: one for UI, one for networking 

ChatClientGUI.java 
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Design Patterns 



What is a design pattern? 

A standard solution to a common programming problem 
–  a high-level programming idiom  

 
Often a technique for making code more flexible 

–  reduces coupling among program components (at some cost) 
 
Shorthand description of a software design 

–  well-known terminology improves communication 
–  makes it easier to think of using the technique 

 
A couple familiar examples…. 
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Example 1:  Observer 

Problem:  other code needs to be called each time state changes 
     but we would like the component to be reusable 

–  can’t just hard-code calls to everything that needs to be called 
 
Solution: 

–  object maintains a list of observers with a known interface 
–  calls a method on each observer when state changes 

 
Disadvantages: 

–  need extra code to add each observer 
–  potentially wastes memory by maintaining a list of objects that 

are known a priori (and are always the same) 
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Example 2:  Iteration 

Problem: accessing all members of a collection requires performing 
    a specialized traversal for each data structure 

–  (makes clients strongly coupled to that data structure) 
 
Solution: 

–  the implementation performs traversals, does bookkeeping 
–  results are communicated to clients via a standard interface 

(e.g., hasNext(), next()) 
 
Disadvantages: 

–  iteration order fixed by the implementation (not the client) 

CSE331 Summer 2016 11 



Why (more) design patterns? 

Design patterns are intended to capture common solutions / idioms, 
name them, make them easy to use to guide design 

–  they are high-level designs, not specific “coding tricks” 
 

They increase your vocabulary and your intellectual toolset 

Do not overuse them 
–  introducing new abstractions to your program has a cost 

•  it makes the code more complicated 
•  it takes time 

–  don’t fix what isn’t broken 
•  wait until you have strong evidence that you will run into 

the problem that pattern is designed to solve 
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Origin of term 

The “Gang of Four” (GoF)  
–  Gamma, Helm, Johnson, Vlissides 

 
 
Found they shared a number of “tricks” and  
decided to codify them 

–  a key rule was that nothing could become a pattern unless 
they could identify at least three real [different] examples 

–  for object-oriented programming 
•  some patterns more general 
•  others compensate for OOP shortcomings 
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P                  atterns vs patterns 
The phrase pattern has been overused since GoF book 
 
Often used as “[somebody says] X is a good way to write programs” 

–  and “anti-pattern” as “Y is a bad way to write programs” 
 
These are useful, but GoF-style patterns are more important 

–  they have richness, history, language-independence, 
documentation and thus (most likely) far more staying power 
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An example GoF pattern 

For some class C, guarantee that at run-time there is exactly one 
(globally visible) instance of C   
 
First, why might you want this? 

–  what design goals are achieved? 
 
Second, how might you achieve this? 

–  how to leverage language constructs to enforce the design 

A pattern has a recognized name 
–  this is the Singleton pattern 
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Possible reasons for Singleton 

•  One RandomNumber generator 
•  One KeyboardReader, PrinterController, etc… 
•  One CampusPaths? 

•  Have an object with fields / methods that are “like public, static 
fields / methods” but have a constructor decide their values 
–  e.g., have main decide which files to give CampusPaths 
–  but rest of the code can just assume it exists 

 
•  Other benefits in certain situations 

–  could delay expensive constructor until actually needed 

CSE331 Summer 2016 16 



public class Foo { 
  private static final Foo instance = new Foo();  
  // private constructor prevents instantiation outside class 
  private Foo() { … } 
  public static Foo getInstance() { 
    return instance; 
  } 
  … instance methods as usual … 
} 

How: multiple approaches 

public class Foo { 
  private static Foo instance; 
  // private constructor prevents instantiation outside class 
  private Foo() { … } 
  public static synchronized Foo getInstance() { 
    if (instance == null) { 
      instance = new Foo(); 
    }  
    return instance; 
  } 
  … instance methods as usual … 
} 

Eager allocation 
of instance 

Lazy allocation 
of instance 
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GoF patterns: three categories 

Creational Patterns are about the object-creation process 
Factory Method, Abstract Factory, Singleton, Builder, 
Prototype, … 
 

Structural Patterns  are about how objects/classes can be 
combined 

Adapter, Bridge, Composite, Decorator, Façade, Flyweight, 
Proxy, … 
 

Behavioral Patterns are about communication among objects 
Command, Interpreter, Iterator, Mediator, Observer, State, 
Strategy, Chain of Responsibility, Visitor, Template Method, … 

 
Green = ones we’ve seen already  
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Creational patterns 

Constructors in Java are inflexible 
1.  Can't return a subtype of the class 
2.  Can’t reuse an existing object 

 
Factories: patterns for how to create new objects 

–  Factory method, Factory object / Builder, Prototype 
 
Sharing: patterns for reusing objects 

–  Singleton, Interning 
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Motivation for factories: 
Changing implementations 

Supertypes support multiple implementations 
interface Matrix { ... } 
class SparseMatrix implements Matrix { ... } 
class DenseMatrix implements Matrix { ... } 
 

Clients use the supertype (Matrix) 
BUT still call SparseMatrix or DenseMatrix constructor 

–  must decide concrete implementation somewhere 
–  might want to make the decision in one place 

•  rather than all over in the code 
–  factory methods put this decision behind an abstraction 
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Use of factories 

class MatrixFactory { 
  public static Matrix createMatrix() {  
    return new SparseMatrix(); 
  } 
} 

 
Clients call createMatrix instead of a particular constructor 

–  better version might take some parameters in order to decide 
whether sparse or dense is a better choice 

 
Advantages: 

–  to switch the implementation, change only one place 
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DateFormat factory methods 

DateFormat class encapsulates how to format dates & times 
–  options: just date, just time, date+time, w/ timezone, etc. 
–  instead of passing all options to constructor, use factories 
–  the subtype created by factory call need not be specified 

 
DateFormat df1 = DateFormat.getDateInstance(); 
DateFormat df2 = DateFormat.getTimeInstance(); 
DateFormat df3 = DateFormat.getDateInstance( 
                     DateFormat.FULL, Locale.FRANCE); 
 
Date today = new Date(); 
 
df1.format(today);   // "Jul 4, 1776" 
df2.format(today));  // "10:15:00 AM" 
df3.format(today));  // "jeudi 4 juillet 1776" 
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Example:  Bicycle race 

class Race { 
  public Race() {     
    Bicycle bike1 = new Bicycle();     
    Bicycle bike2 = new Bicycle();     
    … // assume lots of other code here 
  } 
  … 
} 
 

Suppose there are different types of races 
Each race needs its own type of bicycle… 
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Example:  Tour de France 

class TourDeFrance extends Race { 
  public TourDeFrance() { 
    Bicycle bike1 = new RoadBicycle(); 
    Bicycle bike2 = new RoadBicycle(); 
   … 
  } 
  … 
} 
 

The Tour de France needs a road bike… 
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Example:  Cyclocross 

class Cyclocross extends Race { 
  public Cyclocross() { 
    Bicycle bike1 = new MountainBicycle(); 
    Bicycle bike2 = new MountainBicycle(); 
   … 
  } 
  … 
} 
 

And the cyclocross needs a mountain bike. 
 

Problem: have to override the constructor in every Race subclass 
just to use a different subclass of Bicycle 
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Factory method for Bicycle 

class Race { 
  Bicycle createBicycle() { return new Bicycle(); } 
  public Race() { 
    Bicycle bike1 = createBicycle(); 
    Bicycle bike2 = createBicycle(); 
    ... 
  } 
} 

 
Solution: use a factory method to avoid choosing which type to create 

–  let the subclass decide by overriding createBicycle 
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Subclasses override factory method 
class TourDeFrance extends Race { 
  Bicycle createBicycle() { 
    return new RoadBicycle(); 
  } 
  public TourDeFrance() { super(); } 
} 
class Cyclocross extends Race { 
  Bicycle createBicycle() { 
    return new MountainBicycle(); 
  } 
  public Cyclocross() { super(); } 
} 
 

•  Requires foresight to use factory method in superclass constructor 
•  Subtyping in the overriding methods! 
•  Supports other types of reuse (e.g. addBicycle could use it too) 
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A Brief Aside 

 
 
 
 
 
 
 
 
 
 
Did you see what that code just did? 

–  it called a subclass method from a constructor! 
–  factory methods should usually be static methods 
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Factory objects 

•  Let’s move the method into a separate class 
–  so it’s part of a factory object 

•  Advantages: 
–  no longer risks horrifying bugs 
–  can pass factories around around at runtime 

•  e.g., let main decide which one to use 
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Factory objects/classes  
encapsulate factory method(s) 

class BicycleFactory { 
  Bicycle createBicycle() {  
   return new Bicycle();  
  } 
} 
class RoadBicycleFactory extends BicycleFactory { 
  Bicycle createBicycle() {  

        return new RoadBicycle();  

   } 
} 
class MountainBicycleFactory extends BicycleFactory { 
  Bicycle createBicycle() {  

        return new MountainBicycle(); 
  } 
} 
 
These are returning subtypes 
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Using a factory object 

class Race { 
  BicycleFactory bfactory; 
  public Race(BicycleFactory f) { 
    bfactory = f; 
    Bicycle bike1 = bfactory.createBicycle(); 
    Bicycle bike2 = bfactory.createBicycle(); 
    … 
  } 
  public Race() { this(new BicycleFactory()); } 
  … 
} 
     
 
Setting up the flexibility here: 

•  Factory object stored in a field, set by constructor 
•  Can take the factory as a constructor-argument 
•  But an implementation detail (?), so 0-argument constructor too 

–  Java detail: call another constructor in same class with this 
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The subclasses 

 

class TourDeFrance extends Race { 
  public TourDeFrance() {  
    super(new RoadBicycleFactory());  
  } 
} 
 
class Cyclocross extends Race { 
  public Cyclocross() {  
    super(new MountainBicycleFactory());  
  } 
} 
 
Voila! 
 
–  Just call the superclass constructor with a different factory 
–  Race class had foresight to delegate “what to do to create a 

bicycle” to the factory object, making it more reusable 
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Separate control over bicycles and races 

  class TourDeFrance extends Race { 
    public TourDeFrance() {  
      super(new RoadBicycleFactory()); // or this(…) 
    } 
    public TourDeFrance(BicycleFactory f) { 
      super(f); 
    } 
    … 
  } 
 

By having factory-as-argument option, we can allow arbitrary mixing 
by client: new TourDeFrance(new TricycleFactory()) 
 
Less useful in this example (?): Swapping in different factory object 
whenever you want 
 
Reminder: Not shown here is also using factories for creating races 
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Prototype pattern 

•  Each object is itself a factory: 
–  objects contain a clone method that creates a copy 

 
•  Useful for objects that are created via a process 

–  Example: java.awt.geom.AffineTransform 
–  create by a sequence of calls to translate, scale, and rotate 
–  easiest to make a similar one by copying and changing 

•  saves the work of repeating all the common operations 
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Factories: summary 

Goal: want more flexible abstractions for what class to instantiate 
 

Factory method 
–  call a method to create the object 
–  method can do any computation and return any subtype 

Factory object (also Builder) 
–  Factory has factory methods for some type(s) 
–  Builder has methods to describe object and then create it 

Prototype 
–  every object is a factory, can create more objects like itself 
–  call clone to get a new object of same subtype as receiver 

Dependency Injection 
–  put choice of subclass in a file to avoid source-code changes 

or even recompiling when decision changes 
•  (not usually a big problem) 
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