
CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2016

Design Patterns, Part 1
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Announcements

•  Course evaluation: https://uw.iasystem.org/survey/163511
–  we can’t see the results until the course is over

•  HW9 is due next Wednesday at 11pm, but…
–  (voluntary) demos during Wednesday lecture
–  need to finish by Tuesday night to participate

•  Last reading quiz is due tonight at 11pm

CSE331 Summer 2016 2

CSE 331 Summer 2016 3

Review

Graphics Example 1

Flower.java

CSE331 Summer 2016 4

Graphics Example 2

FlowerTimer.java

CSE331 Summer 2016 5

•  Easier to do the drawing work in a drawing program
–  (if no timer) just save the drawing to an image
–  draw the image in paintComponent

FlowerImage.java

Graphics Example 3

CSE331 Summer 2016 6

Example: Chat Client GUI

•  We now can fully understand the chat client
–  uses BorderLayout and a couple of nested panels

•  one is a scrolling panel for the message area
–  uses two event loops: one for UI, one for networking

ChatClientGUI.java

CSE331 Summer 2016 7

CSE 331 Summer 2016 8

Design Patterns

What is a design pattern?

A standard solution to a common programming problem
–  a high-level programming idiom

Often a technique for making code more flexible

–  reduces coupling among program components (at some cost)

Shorthand description of a software design

–  well-known terminology improves communication
–  makes it easier to think of using the technique

A couple familiar examples….

CSE331 Summer 2016 9

Example 1: Observer

Problem: other code needs to be called each time state changes
 but we would like the component to be reusable

–  can’t just hard-code calls to everything that needs to be called

Solution:

–  object maintains a list of observers with a known interface
–  calls a method on each observer when state changes

Disadvantages:

–  need extra code to add each observer
–  potentially wastes memory by maintaining a list of objects that

are known a priori (and are always the same)

CSE331 Summer 2016 10

Example 2: Iteration

Problem: accessing all members of a collection requires performing
 a specialized traversal for each data structure

–  (makes clients strongly coupled to that data structure)

Solution:

–  the implementation performs traversals, does bookkeeping
–  results are communicated to clients via a standard interface

(e.g., hasNext(), next())

Disadvantages:

–  iteration order fixed by the implementation (not the client)

CSE331 Summer 2016 11

Why (more) design patterns?

Design patterns are intended to capture common solutions / idioms,
name them, make them easy to use to guide design

–  they are high-level designs, not specific “coding tricks”

They increase your vocabulary and your intellectual toolset

Do not overuse them
–  introducing new abstractions to your program has a cost

•  it makes the code more complicated
•  it takes time

–  don’t fix what isn’t broken
•  wait until you have strong evidence that you will run into

the problem that pattern is designed to solve

CSE331 Summer 2016 12

Origin of term

The “Gang of Four” (GoF)
–  Gamma, Helm, Johnson, Vlissides

Found they shared a number of “tricks” and
decided to codify them

–  a key rule was that nothing could become a pattern unless
they could identify at least three real [different] examples

–  for object-oriented programming
•  some patterns more general
•  others compensate for OOP shortcomings

CSE331 Summer 2016 13

P atterns vs patterns
The phrase pattern has been overused since GoF book

Often used as “[somebody says] X is a good way to write programs”

–  and “anti-pattern” as “Y is a bad way to write programs”

These are useful, but GoF-style patterns are more important

–  they have richness, history, language-independence,
documentation and thus (most likely) far more staying power

CSE331 Summer 2016 14

An example GoF pattern

For some class C, guarantee that at run-time there is exactly one
(globally visible) instance of C

First, why might you want this?

–  what design goals are achieved?

Second, how might you achieve this?

–  how to leverage language constructs to enforce the design

A pattern has a recognized name
–  this is the Singleton pattern

CSE331 Summer 2016 15

Possible reasons for Singleton

•  One RandomNumber generator
•  One KeyboardReader, PrinterController, etc…
•  One CampusPaths?

•  Have an object with fields / methods that are “like public, static
fields / methods” but have a constructor decide their values
–  e.g., have main decide which files to give CampusPaths
–  but rest of the code can just assume it exists

•  Other benefits in certain situations

–  could delay expensive constructor until actually needed

CSE331 Summer 2016 16

public class Foo {
 private static final Foo instance = new Foo();
 // private constructor prevents instantiation outside class
 private Foo() { … }
 public static Foo getInstance() {
 return instance;
 }
 … instance methods as usual …
}

How: multiple approaches

public class Foo {
 private static Foo instance;
 // private constructor prevents instantiation outside class
 private Foo() { … }
 public static synchronized Foo getInstance() {
 if (instance == null) {
 instance = new Foo();
 }
 return instance;
 }
 … instance methods as usual …
}

Eager allocation
of instance

Lazy allocation
of instance

CSE331 Summer 2016 17

GoF patterns: three categories

Creational Patterns are about the object-creation process
Factory Method, Abstract Factory, Singleton, Builder,
Prototype, …

Structural Patterns are about how objects/classes can be
combined

Adapter, Bridge, Composite, Decorator, Façade, Flyweight,
Proxy, …

Behavioral Patterns are about communication among objects
Command, Interpreter, Iterator, Mediator, Observer, State,
Strategy, Chain of Responsibility, Visitor, Template Method, …

Green = ones we’ve seen already

CSE331 Summer 2016 18

Creational patterns

Constructors in Java are inflexible
1.  Can't return a subtype of the class
2.  Can’t reuse an existing object

Factories: patterns for how to create new objects

–  Factory method, Factory object / Builder, Prototype

Sharing: patterns for reusing objects

–  Singleton, Interning

CSE331 Summer 2016 19

Motivation for factories:
Changing implementations

Supertypes support multiple implementations
interface Matrix { ... }
class SparseMatrix implements Matrix { ... }
class DenseMatrix implements Matrix { ... }

Clients use the supertype (Matrix)
BUT still call SparseMatrix or DenseMatrix constructor

–  must decide concrete implementation somewhere
–  might want to make the decision in one place

•  rather than all over in the code
–  factory methods put this decision behind an abstraction

CSE331 Summer 2016 20

Use of factories

class MatrixFactory {
 public static Matrix createMatrix() {
 return new SparseMatrix();
 }
}

Clients call createMatrix instead of a particular constructor

–  better version might take some parameters in order to decide
whether sparse or dense is a better choice

Advantages:

–  to switch the implementation, change only one place

CSE331 Summer 2016 21

DateFormat factory methods

DateFormat class encapsulates how to format dates & times
–  options: just date, just time, date+time, w/ timezone, etc.
–  instead of passing all options to constructor, use factories
–  the subtype created by factory call need not be specified

DateFormat df1 = DateFormat.getDateInstance();
DateFormat df2 = DateFormat.getTimeInstance();
DateFormat df3 = DateFormat.getDateInstance(
 DateFormat.FULL, Locale.FRANCE);

Date today = new Date();

df1.format(today); // "Jul 4, 1776"
df2.format(today)); // "10:15:00 AM"
df3.format(today)); // "jeudi 4 juillet 1776"

CSE331 Summer 2016 22

Example: Bicycle race

class Race {
 public Race() {
 Bicycle bike1 = new Bicycle();
 Bicycle bike2 = new Bicycle();
 … // assume lots of other code here
 }
 …
}

Suppose there are different types of races
Each race needs its own type of bicycle…

CSE331 Summer 2016 23

Example: Tour de France

class TourDeFrance extends Race {
 public TourDeFrance() {
 Bicycle bike1 = new RoadBicycle();
 Bicycle bike2 = new RoadBicycle();
 …
 }
 …
}

The Tour de France needs a road bike…

CSE331 Summer 2016 24

Example: Cyclocross

class Cyclocross extends Race {
 public Cyclocross() {
 Bicycle bike1 = new MountainBicycle();
 Bicycle bike2 = new MountainBicycle();
 …
 }
 …
}

And the cyclocross needs a mountain bike.

Problem: have to override the constructor in every Race subclass
just to use a different subclass of Bicycle

 CSE331 Summer 2016 25

Factory method for Bicycle

class Race {
 Bicycle createBicycle() { return new Bicycle(); }
 public Race() {
 Bicycle bike1 = createBicycle();
 Bicycle bike2 = createBicycle();
 ...
 }
}

Solution: use a factory method to avoid choosing which type to create

–  let the subclass decide by overriding createBicycle

CSE331 Summer 2016 26

Subclasses override factory method
class TourDeFrance extends Race {
 Bicycle createBicycle() {
 return new RoadBicycle();
 }
 public TourDeFrance() { super(); }
}
class Cyclocross extends Race {
 Bicycle createBicycle() {
 return new MountainBicycle();
 }
 public Cyclocross() { super(); }
}

•  Requires foresight to use factory method in superclass constructor
•  Subtyping in the overriding methods!
•  Supports other types of reuse (e.g. addBicycle could use it too)

CSE331 Summer 2016 27

A Brief Aside

Did you see what that code just did?

–  it called a subclass method from a constructor!
–  factory methods should usually be static methods

CSE331 Summer 2016 28

Factory objects

•  Let’s move the method into a separate class
–  so it’s part of a factory object

•  Advantages:
–  no longer risks horrifying bugs
–  can pass factories around around at runtime

•  e.g., let main decide which one to use

CSE331 Summer 2016 29

Factory objects/classes
encapsulate factory method(s)

class BicycleFactory {
 Bicycle createBicycle() {
 return new Bicycle();
 }
}
class RoadBicycleFactory extends BicycleFactory {
 Bicycle createBicycle() {

 return new RoadBicycle();

 }
}
class MountainBicycleFactory extends BicycleFactory {
 Bicycle createBicycle() {

 return new MountainBicycle();
 }
}

These are returning subtypes

CSE331 Summer 2016 30

Using a factory object

class Race {
 BicycleFactory bfactory;
 public Race(BicycleFactory f) {
 bfactory = f;
 Bicycle bike1 = bfactory.createBicycle();
 Bicycle bike2 = bfactory.createBicycle();
 …
 }
 public Race() { this(new BicycleFactory()); }
 …
}

Setting up the flexibility here:

•  Factory object stored in a field, set by constructor
•  Can take the factory as a constructor-argument
•  But an implementation detail (?), so 0-argument constructor too

–  Java detail: call another constructor in same class with this

CSE331 Summer 2016 31

The subclasses

class TourDeFrance extends Race {
 public TourDeFrance() {
 super(new RoadBicycleFactory());
 }
}

class Cyclocross extends Race {
 public Cyclocross() {
 super(new MountainBicycleFactory());
 }
}

Voila!

–  Just call the superclass constructor with a different factory
–  Race class had foresight to delegate “what to do to create a

bicycle” to the factory object, making it more reusable

CSE331 Summer 2016 32

Separate control over bicycles and races

 class TourDeFrance extends Race {
 public TourDeFrance() {
 super(new RoadBicycleFactory()); // or this(…)
 }
 public TourDeFrance(BicycleFactory f) {
 super(f);
 }
 …
 }

By having factory-as-argument option, we can allow arbitrary mixing
by client: new TourDeFrance(new TricycleFactory())

Less useful in this example (?): Swapping in different factory object
whenever you want

Reminder: Not shown here is also using factories for creating races

CSE331 Summer 2016 33

Prototype pattern

•  Each object is itself a factory:
–  objects contain a clone method that creates a copy

•  Useful for objects that are created via a process

–  Example: java.awt.geom.AffineTransform
–  create by a sequence of calls to translate, scale, and rotate
–  easiest to make a similar one by copying and changing

•  saves the work of repeating all the common operations

CSE331 Summer 2016 34

Factories: summary

Goal: want more flexible abstractions for what class to instantiate

Factory method
–  call a method to create the object
–  method can do any computation and return any subtype

Factory object (also Builder)
–  Factory has factory methods for some type(s)
–  Builder has methods to describe object and then create it

Prototype
–  every object is a factory, can create more objects like itself
–  call clone to get a new object of same subtype as receiver

Dependency Injection
–  put choice of subclass in a file to avoid source-code changes

or even recompiling when decision changes
•  (not usually a big problem)

CSE331 Summer 2016 35

