
CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2016

Java GUIs
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Review

• Event-driven program is one whose main loop waits for an event
and then processes it (over and over until quit time)
– this sort of loop is called an event loop

• Examples of event-driven programs:
– (web) servers
– GUIs

• Technicalities:
– OSes only let you wait for certain types of events at once
– work around it by having another thread list for other types

• (but be careful about what work is done on which thread)

2CSE331 Summer 2016

CSE 331 Summer 2016 3

Java AWT / Swing

References on Java AWT / Swing

Very useful start: Sun/Oracle Java tutorials
– http://docs.oracle.com/javase/tutorial/uiswing/index.html

Mike Hoton’s slides/sample code from CSE 331 Sp12 (lectures 23,
24 with more extensive widget examples)

– http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect23-GUI.pdf
– http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect24-Graphics.pdf
– http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect23-GUI-code.zip
– http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect24-Graphics-code.zip

Good book that covers this (and much more):
Core Java vol. I by Horstmann & Cornell

– there are other decent Java books out there too

4CSE331 Summer 2016

What not to do…

• Don’t try to learn the whole library: there’s way too much

• Don’t memorize – look things up as you need them

• Don’t miss the main ideas & fundamental concepts

• Don’t get bogged down implementing eye candy
– (unless you finish everything else)

5CSE331 Summer 2016

A very short history (1)

Java’s standard libraries have supported GUIs from the beginning

Original Java GUI: AWT (Abstract Window Toolkit)
– mapped Java UI to host system UI widgets
– limited set of user interface elements (widgets)

• lowest common denominator

Advantage: looks native
Disadvantage: “write once, debug everywhere”

6CSE331 Summer 2016

A very short history (2)

Swing: newer GUI library, introduced with Java 2 (1998)

Basic idea: underlying system provides only a blank window
– Swing draws all UI components directly
– doesn’t use underlying system widgets
– (built on top of parts of AWT)

Advantage: should work the same on all platforms
– (be skeptical of that claim)

Disadvantage: doesn’t look like a native GUI for that OS

7CSE331 Summer 2016

A very short history (3)

SWT: improved version of AWT approach (2004?)
– tries to expose all the functionality of native GUIs
– Eclipse is built using SWT
– not part of the standard Java library

Two choices:
1. Use Swing to make a GUI that looks / works consistently
2. Use SWT to make a native-looking GUI on each platform

Option 1 is less work.
Option 2 usually makes users happier.

We’ll cover Swing since it’s standard Java...
8CSE331 Summer 2016

Main topics to learn

Using AWT/Swing components (a.k.a. widgets):
– different types of components
– how to lay them out in a window
– how to handle widget events

Writing your own components (Thursday section):
– how to draw your own UI
– how to handle lower level events

9CSE331 Summer 2016

GUI terminology
window: A first-class citizen of the graphical desktop

– also called a top-level container
– Examples: frame (window), dialog box

component: A GUI widget that resides in a window
– called controls in many other languages
– Examples: button, text box, label

container: A component that hosts (holds) components
– Examples: frame, panel, box

10CSE331 Summer 2016

Some components…

CSE331 Spring 2016 11

Component and container classes

• Every GUI-related class
descends from Component,
which contains dozens of basic
methods and fields
– Examples: getBounds,
isVisible,
setForeground, …

• “Atomic” components: labels,
text fields, buttons, check boxes,
icons, menu items…

• Many components are
containers – things like panels
(JPanel) that can hold nested
subcomponents

12

Component

Container

JComponent

JPanel JFileChooser Tons of
JComponents

Various
AWT

containers

Lots of AWT
components

CSE331 Summer 2016

Swing/AWT inheritance hierarchy
Component (AWT)

Window
Frame

JFrame (Swing)
JDialog

Container
JComponent (Swing)

JButton JColorChooser JFileChooser
JComboBox JLabel JList
JMenuBar JOptionPane JPanel
JPopupMenu JProgressBar JScrollbar
JScrollPane JSlider JSpinner
JSplitPane JTabbedPane JTable
JToolbar JTree JTextArea
JTextField ...

13CSE331 Summer 2016

Component properties
Zillions. Each has a get (or is) accessor and a set modifier.
Examples: getColor,setFont,isVisible, …

name type description
background Color background	color	behind	component
border Border border	line	around	component
enabled boolean whether	it	can	be	interacted	with
focusable boolean whether	key	text	can	be	typed	on	it

font Font font	used	for	text	in	component
foreground Color foreground	color	of	component
height,	width int component's	current	size	in	pixels

visible boolean whether	component	can	be	seen
tooltip	text String text	shown	when	hovering	mouse

size,	minimum	/	maximum	
/	preferred	size

Dimension various	sizes,	size	limits,	or	desired	
sizes	that	the	component	may	take

CSE331 Summer 2016 14

Types of containers

• Top-level containers: JFrame, JDialog, …
– usually correspond to OS windows
– a “host” for other components
– live at top of UI hierarchy, not nested in anything else

• Mid-level containers: panels, scroll panes, tool bars
– sometimes contain other containers, sometimes not
– JPanel is a general-purpose component for drawing or

hosting other UI elements (buttons, etc.)

• Specialized containers: menus, list boxes, …

15CSE331 Summer 2016

JFrame – top-level window

• Graphical window on the screen

• Holds other components

• Common methods:
– JFrame(String title): constructor, title optional
– setDefaultCloseOperation(int what)

• What to do on window close
• JFrame.EXIT_ON_CLOSE terminates application

– setSize(int width, int height): set size
– setVisible(boolean b): make window visible or not

16CSE331 Summer 2016

Example

SimpleFrameMain.java

17CSE331 Summer 2016

JFrame – top-level window

• Graphical window on the screen

• Holds other components

• Common methods:
– JFrame(String title): constructor, title optional
– setDefaultCloseOperation(int what)

• What to do on window close
• JFrame.EXIT_ON_CLOSE terminates application

– setSize(int width, int height): set size
– setVisible(boolean b): make window visible or not
– add(Component c): add component to window

18CSE331 Summer 2016

Example

SimpleButtonDemo.java

19CSE331 Summer 2016

Where is the event loop?

GUIs are event-driven programs, so where is the event loop?

• It is created automatically by Swing
– presumably when we call frame.setVisible(true)

• The main method actually returns…

• Swing creates another thread to run the GUI event loop
– this is called the UI thread
– the Java VM does not quit the program until all threads exit

20CSE331 Summer 2016

Example

SimpleButtonDemo2.java

21CSE331 Summer 2016

JPanel – a general-purpose container

• Commonly used to hold a collection of button, labels, etc.
– (also has another use you will learn about in section)

• Needs to be added to a window or other container:
frame.add(new JPanel(…))

• JPanels can be nested to any depth

• Many methods/fields in common with JFrame (since both inherit
from Component)
– Can’t find a method/field? Check the superclasses.

A particularly useful method:
– setPreferredSize(Dimension d)

22CSE331 Summer 2016

Example

SimpleButtonDemo3.java

23CSE331 Summer 2016

Example

SimpleFieldDemo.java

24CSE331 Summer 2016

Containers and layout

• What if we add several components to a container?
– How are they positioned relative to each other?

• Answer: each container has a layout manger

CSE331 Summer 2016 25

Layout managers
Kinds:

– FlowLayout (left to right [changeable], top to bottom)
• Default for JPanel
• Each row centered horizontally [changeable]

– BorderLayout (“center”, “north”, “south”, “east”, “west”)
• Default for JFrame
• No more than one component in each of 5 regions
• (Of course, component can itself be a container)

– GridLayout (regular 2-D grid)

– Others... (Some are incredibly complex. None are perfect.)

26CSE331 Summer 2016

Layout managers
You can change the layout manager on any JComponent c

– c.setLayout(new GridLayout())

FlowLayout and BorderLayout are likely good enough for now…

(There are similar issues creating UI in HTML…)

27CSE331 Summer 2016

Example

SimpleFieldDemo2.java

28CSE331 Summer 2016

Example

SimpleFieldDemo3.java

29CSE331 Summer 2016

pack()

Instead of having the components lay out within the window size,
you can instead size the window to fit the components:

frame.pack();

pack() figures out the sizes of all components and calls the
container’s layout manager to set locations in the container

– (recursively as needed)

30CSE331 Summer 2016

Example

SimpleFieldDemo4.java

31CSE331 Summer 2016

