
CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2016

Lecture 1 – Introduction & Overview
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)



What is the goal of CSE 331?

In short: to help you become better programmers

Specifically, to teach you how to write code of
• higher quality
• increased complexity

We will discuss tools and techniques to help with these

CSE 331 Summer 2016 2



What is high quality?

Code is high quality when it is

1. ​​​​​​​​Correct
– everything else is of secondary importance

2. Easy to change
– most work is making changes to existing systems

3. Easy to understand
– needed for 1 & 2 above

CSE 331 Summer 2016 3



How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. ​Tools
– e.g., type checking compiler

2. ​Inspection
– think through your code carefully
– have another person review your code

3. ​Testing
– usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%

CSE 331 Summer 2016 4



What is increased complexity?

Analogy to building physical objects:

• 100 well-tested LOC = a nice cabinet
• 2,500 LOC = a room with furniture
• 2,500,000 LOC = 1000 rooms ≈

CSE 331 Summer 2016 5

North Carolina class WW2 battleship



CSE 331 Summer 2016 6

≈
the entire British Naval fleet in WW2



Actually, software is more complex…

• Every bit of code is unique, individually designed
– US built 10 identical Essex carriers

– Software equivalent would be one carrier 10 times as large:

• Defects can be even more destructive
– a defect in one room can sink the ship
– but a defect OS could sink the whole fleet

• And more reasons we will see shortly…

CSE 331 Summer 2016 7



How do we cope with complexity?

We tackle complexity with modularity
• split code into pieces that can be built independently
• each must be documented so others can use it
• also helps understandability and changeability

In summary, we want our code to be:
1. correct
2. easy to change
3. easy to understand
4. modular

CSE 331 Summer 2016 8



Scale makes everything harder

Modularity makes scale possible but it’s still hard…
• Time to write N-line program grows faster than linear

– good estimate is O(N1.05) [Boehm, ‘81]
• Bugs grow like Θ(N log N) [Jones, ‘12’]

– 10% are errors are btw modules [Seaman, ‘08]
– corner cases are more important with more users

• Comm. costs dominate schedules [Brooks, ‘75]

CSE 331 Summer 2016 9

Corollary: quality must be even higher, per line, in 
order to achieve overall quality in a large program



What we will cover in CSE 331

• Everything we cover relates to the 4 goals
• We’ll use Java but the principles apply in any setting

CSE 331 Summer 2016 10

Correctness
1. Tools

• Git, Eclipse, JUnit, Javadoc, …
• Java libraries: equality & hashing
• Adv. Java: generics, assertions, …
• debugging

2. Inspection
• reasoning about code
• specifications

3. Testing
• test design
• coverage

Modularity
• module design & design patterns
• event-driven programming, MVC, GUIs

Changeability
• specifications, ADTs
• listeners & callbacks

Understandability
• specifications, ADTs
• Adv. Java: exceptions
• subtypes



CSE 331 Summer 2016 11

Administrivia



Course staff
• Lecturer:

– Kevin Zatloukal (kevinz@cs, zat@uw)

• TAs:
– Justin Bare (jbare@cs)
– Vincent Liew (vliew@cs)

• Office Hours:

12CSE 331 Summer 2016

Monday Tuesday Wednesday
2:30 – 3:30pm 2:30 – 3:30pm 2:30 – 3:30pm

CSE 218 CSE 006 CSE 006
Kevin Vincent Justin



Staying in touch

• Course email list: cse331a_su16@u.washington.edu
– for class announcements
– students and staff already subscribed
– fairly low traffic

• Message Board
– for class discussion (staff will monitor and participate)
– help each other out and stay in touch outside of class

• Course staff: cse331-staff@cs.washington.edu 
– for things that don’t make sense to post on message board

13CSE 331 Summer 2016



Prerequisites
Only prerequisite is Java knowledge

– we assume you have mastered CSE142 and CSE143

Examples
• Sharing:

– distinction between == and equals()
– aliasing: multiple references to the same object

• Object-oriented dispatch:
– inheritance and overriding
– objects/values have a run-time type

• Subtyping
– expressions have a compile-time type
– subtyping via extends (classes) and implements (interfaces)

14CSE 331 Summer 2016



Lecture and section

• Both are required

• All materials posted, but they are visual aids
– arrive punctually and pay attention
– if doing so doesn’t save you time, one of us is messing up (!)

• Section will often be more tools- and homework-focused
– especially next week: preparing for projects

• Will post other handouts related to class material on web site
http://courses.cs.washington.edu/courses/cse331/16su/

15CSE 331 Summer 2016



Homework

• Homework assignments will
1. give you more practice
2. require you to apply the techniques learned in class

• Pro Tip: think about which techniques are intended

• Four (4) late days for the quarter: save for emergencies
– max 2 per homework, save them for later
– email staff if you need to use 2 (may have started grading)

• We will have 10 homework assignments
– first 3 are on paper, then all coding
– early assignments come faster in summer quarter…

16CSE 331 Summer 2016



Homework (cont.)

CSE 331 Summer 2016 17

Not as bad as it looks on the calendar…



Academic Integrity

"The code you write must be your own."

• Read the course policy carefully
– collaboration is encouraged, but…
– do not share your HW code with others

• When in doubt, document your collaboration in your HW
– at worst, you will lose a few points

• Cheating disrespects your colleagues and yourself

18CSE 331 Summer 2016



Books

Required textbook
• Effective Java 2nd ed, Bloch (EJ)

Other useful books:
• Pragmatic Programmer, Hunt & Thomas (PP)

– recommended (usually required)

• Program Development in Java, Liskov & Guttag
– would be the textbook if not from 2001

• Core Java Vol I, Horstmann
– good reference on language & libraries

19CSE 331 Summer 2016



Books? In the 21st century?

• Why not just use Google, Stack Overflow, Reddit, Quora, …?

• Web articles can
– be out of date (without any indication this is so)

• even 2014 is like 1960 in Internet years
– rely on context that is not apparent on that page

• Books usually give better presentation of high level ideas
– the purpose of a language feature or library
– key reasons for its design

• Do use the Java 8 APIs (link on web site)

20CSE 331 Summer 2016



Readings & Quizzes

• We will have readings from first 2 (or 3) books
– if not in EJ, then photocopies will be provided in class
– these books are also on reserve at the library

• These are “real” books about software, approachable in 331 
– occasionally slight reach: accept the challenge

• Quizzes to make sure you don’t skip the readings
– short: 2-6 questions, usually multiple choice
– take as many times as you want

21CSE 331 Summer 2016



Exams

• Midterm in class on Friday, July 22nd

• Final in class on Friday, August 19th

• Exams will be
– focused on concepts learned in class
– shorter than in normal quarters (1 hour each)

22CSE 331 Summer 2016



Grading

Approximate weighting (subject to change):

Readability review: make sure your code is understandable
• ungraded readability review on either HW5 or HW 6
• graded readability review on either HW 7 or HW 8 or HW 9

CSE 331 Summer 2016 23

50% Homework
5% Homework readability review
5% Reading quizzes
20% Midterm exam
20% Final exam



Acknowledgments

• Course designed/created/evolved/edited by others
– Michael D. Ernst
– Dan Grossman
– David Notkin
– Hal Perkins
– Zach Tatlock (newcomer last quarter)
– A couple dozen amazing TAs

• Hoping my own perspective offers benefits

• [Because you are unlikely to care, I won’t carefully attribute 
authorship of course materials]

24CSE 331 Summer 2016



CSE 331 can be challenging

• Past experience tells us CSE 331 is hard
– not my intention to make it difficult!

• Big change to move
– from programming by brute-force, trial & error
– to programming by careful design, reasoning, and testing

• Assignments will take more time than you think (start early)
– even professionals routinely underestimate by 3x
– these assignments will be a step up in difficulty

• Learning to program well is worth the effort
– create solely with the power of your imagination
– create software that positively affects the lives of many people

25CSE 331 Summer 2016



CSE 331 Summer 2016 26

Questions?



CSE 331 Summer 2016 27

Reasoning about code



A Problem

“Complete this method such that it returns the index of the max of 
the first n elements of the array arr.”

int indexOfMaximum(int[] arr, int n) {
...

}

Take a minute to think about how you’d write this…

28CSE 331 Summer 2016



A Solution?

Is this solution correct?

int indexOfMaximum(int[] arr, int n) {
int maxValue = arr[0];
int maxIndex = 0;
for (int i = 1; i < n; i++) {
if (arr[i] > maxValue) {
maxValue = arr[i];
maxIndex = i;

}
}
return maxIndex;

}

29CSE 331 Summer 2016



A Solution?

Is this solution correct?

int indexOfMaximum(int[] arr, int n) {
int maxValue = arr[0];
int maxIndex = 0;
for (int i = 1; i < n; i++) {
if (arr[i] > maxValue) {
maxValue = arr[i];
maxIndex = i;

}
}
return maxIndex;

}

30CSE 331 Summer 2016

Corner cases:
• What if there are ties?
• What if n is 0?

Error cases:
• What if arr.length < n?
• What if arr is null?



Morals
• You can all write the code!

• Takes work to show that the code is correct
• Step 1: what does it mean to be correct?

– that is called the “specification” for the function
– can’t argue correctness if we don’t know what is correct

• Specifications are hard to write
– there can be many corner cases and error cases
– do we even want to specify behavior for all of these?

• depends on the situation
• will discuss stronger vs weaker specs next time…

31CSE 331 Summer 2016



You have homework!

• Homework 0, due in dropbox by 1pm Wednesday
– write an algorithm to rearrange array elements as described
– argue in concise, convincing English that it is correct!
– should run in O(n) time

• challenge: can you do it in a single pass?
– do not actually run your code!

• Start learning to reason about the code you write
– this is the one homework that is intentionally difficult
– stop after 2 hours (write up what you tried)

• this HW grade is for participation not results
– this will be easy in a week or so

32CSE 331 Summer 2016



To-Do List

Before the next class…

1. Familiarize yourself with website:

http://courses.cs.washington.edu/courses/cse331/16su/ 

– read the syllabus (esp. the advice section)
– read the academic integrity policy
– find the homework list

2. Do HW0 by 1 pm Wednesday!
– limit this to 2 hours
– submit a PDF into the dropbox

33CSE 331 Summer 2016


