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What is the goal of CSE 331?

In short: to help you become better programmers

Specifically, to teach you how to write code of
• higher quality
• increased complexity

We will discuss tools and techniques to help with these
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What is high quality?

Code is high quality when it is

1. ​​​​​​​​Correct
– everything else is of secondary importance

2. Easy to change
– most work is making changes to existing systems

3. Easy to understand
– needed for 1 & 2 above
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How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. ​Tools
– e.g., type checking compiler

2. ​Inspection
– think through your code carefully
– have another person review your code

3. ​Testing
– usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%
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What is increased complexity?

Analogy to building physical objects:

• 100 well-tested LOC = a nice cabinet
• 2,500 LOC = a room with furniture
• 2,500,000 LOC = 1000 rooms ≈

CSE 331 Summer 2016 5

North Carolina class WW2 battleship
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≈
the entire British Naval fleet in WW2



Actually, software is more complex…

• Every bit of code is unique, individually designed
– US built 10 identical Essex carriers

– Software equivalent would be one carrier 10 times as large:

• Defects can be even more destructive
– a defect in one room can sink the ship
– but a defect OS could sink the whole fleet

• And more reasons we will see shortly…
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How do we cope with complexity?

We tackle complexity with modularity
• split code into pieces that can be built independently
• each must be documented so others can use it
• also helps understandability and changeability

In summary, we want our code to be:
1. correct
2. easy to change
3. easy to understand
4. modular
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Scale makes everything harder

Modularity makes scale possible but it’s still hard…
• Time to write N-line program grows faster than linear

– good estimate is O(N1.05) [Boehm, ‘81]
• Bugs grow like Θ(N log N) [Jones, ‘12’]

– 10% are errors are btw modules [Seaman, ‘08]
– corner cases are more important with more users

• Comm. costs dominate schedules [Brooks, ‘75]
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Corollary: quality must be even higher, per line, in 
order to achieve overall quality in a large program



What we will cover in CSE 331

• Everything we cover relates to the 4 goals
• We’ll use Java but the principles apply in any setting
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Correctness
1. Tools

• Git, Eclipse, JUnit, Javadoc, …
• Java libraries: equality & hashing
• Adv. Java: generics, assertions, …
• debugging

2. Inspection
• reasoning about code
• specifications

3. Testing
• test design
• coverage

Modularity
• module design & design patterns
• event-driven programming, MVC, GUIs

Changeability
• specifications, ADTs
• listeners & callbacks

Understandability
• specifications, ADTs
• Adv. Java: exceptions
• subtypes
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Administrivia



Course staff
• Lecturer:

– Kevin Zatloukal (kevinz@cs, zat@uw)

• TAs:
– Justin Bare (jbare@cs)
– Vincent Liew (vliew@cs)

• Office Hours:
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Monday Tuesday Wednesday
2:30 – 3:30pm 2:30 – 3:30pm 2:30 – 3:30pm

CSE 218 CSE 006 CSE 006
Kevin Vincent Justin



Staying in touch

• Course email list: cse331a_su16@u.washington.edu
– for class announcements
– students and staff already subscribed
– fairly low traffic

• Message Board
– for class discussion (staff will monitor and participate)
– help each other out and stay in touch outside of class

• Course staff: cse331-staff@cs.washington.edu 
– for things that don’t make sense to post on message board
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Prerequisites
Only prerequisite is Java knowledge

– we assume you have mastered CSE142 and CSE143

Examples
• Sharing:

– distinction between == and equals()
– aliasing: multiple references to the same object

• Object-oriented dispatch:
– inheritance and overriding
– objects/values have a run-time type

• Subtyping
– expressions have a compile-time type
– subtyping via extends (classes) and implements (interfaces)
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Lecture and section

• Both are required

• All materials posted, but they are visual aids
– arrive punctually and pay attention
– if doing so doesn’t save you time, one of us is messing up (!)

• Section will often be more tools- and homework-focused
– especially next week: preparing for projects

• Will post other handouts related to class material on web site
http://courses.cs.washington.edu/courses/cse331/16su/
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Homework

• Homework assignments will
1. give you more practice
2. require you to apply the techniques learned in class

• Pro Tip: think about which techniques are intended

• Four (4) late days for the quarter: save for emergencies
– max 2 per homework, save them for later
– email staff if you need to use 2 (may have started grading)

• We will have 10 homework assignments
– first 3 are on paper, then all coding
– early assignments come faster in summer quarter…
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Homework (cont.)
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Not as bad as it looks on the calendar…



Academic Integrity

"The code you write must be your own."

• Read the course policy carefully
– collaboration is encouraged, but…
– do not share your HW code with others

• When in doubt, document your collaboration in your HW
– at worst, you will lose a few points

• Cheating disrespects your colleagues and yourself
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Books

Required textbook
• Effective Java 2nd ed, Bloch (EJ)

Other useful books:
• Pragmatic Programmer, Hunt & Thomas (PP)

– recommended (usually required)

• Program Development in Java, Liskov & Guttag
– would be the textbook if not from 2001

• Core Java Vol I, Horstmann
– good reference on language & libraries
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Books? In the 21st century?

• Why not just use Google, Stack Overflow, Reddit, Quora, …?

• Web articles can
– be out of date (without any indication this is so)

• even 2014 is like 1960 in Internet years
– rely on context that is not apparent on that page

• Books usually give better presentation of high level ideas
– the purpose of a language feature or library
– key reasons for its design

• Do use the Java 8 APIs (link on web site)
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Readings & Quizzes

• We will have readings from first 2 (or 3) books
– if not in EJ, then photocopies will be provided in class
– these books are also on reserve at the library

• These are “real” books about software, approachable in 331 
– occasionally slight reach: accept the challenge

• Quizzes to make sure you don’t skip the readings
– short: 2-6 questions, usually multiple choice
– take as many times as you want
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Exams

• Midterm in class on Friday, July 22nd

• Final in class on Friday, August 19th

• Exams will be
– focused on concepts learned in class
– shorter than in normal quarters (1 hour each)
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Grading

Approximate weighting (subject to change):

Readability review: make sure your code is understandable
• ungraded readability review on either HW5 or HW 6
• graded readability review on either HW 7 or HW 8 or HW 9
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50% Homework
5% Homework readability review
5% Reading quizzes
20% Midterm exam
20% Final exam



Acknowledgments

• Course designed/created/evolved/edited by others
– Michael D. Ernst
– Dan Grossman
– David Notkin
– Hal Perkins
– Zach Tatlock (newcomer last quarter)
– A couple dozen amazing TAs

• Hoping my own perspective offers benefits

• [Because you are unlikely to care, I won’t carefully attribute 
authorship of course materials]
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CSE 331 can be challenging

• Past experience tells us CSE 331 is hard
– not my intention to make it difficult!

• Big change to move
– from programming by brute-force, trial & error
– to programming by careful design, reasoning, and testing

• Assignments will take more time than you think (start early)
– even professionals routinely underestimate by 3x
– these assignments will be a step up in difficulty

• Learning to program well is worth the effort
– create solely with the power of your imagination
– create software that positively affects the lives of many people
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Questions?
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Reasoning about code



A Problem

“Complete this method such that it returns the index of the max of 
the first n elements of the array arr.”

int indexOfMaximum(int[] arr, int n) {
...

}

Take a minute to think about how you’d write this…
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A Solution?

Is this solution correct?

int indexOfMaximum(int[] arr, int n) {
int maxValue = arr[0];
int maxIndex = 0;
for (int i = 1; i < n; i++) {
if (arr[i] > maxValue) {
maxValue = arr[i];
maxIndex = i;

}
}
return maxIndex;

}
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A Solution?

Is this solution correct?

int indexOfMaximum(int[] arr, int n) {
int maxValue = arr[0];
int maxIndex = 0;
for (int i = 1; i < n; i++) {
if (arr[i] > maxValue) {
maxValue = arr[i];
maxIndex = i;

}
}
return maxIndex;

}
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Corner cases:
• What if there are ties?
• What if n is 0?

Error cases:
• What if arr.length < n?
• What if arr is null?



Morals
• You can all write the code!

• Takes work to show that the code is correct
• Step 1: what does it mean to be correct?

– that is called the “specification” for the function
– can’t argue correctness if we don’t know what is correct

• Specifications are hard to write
– there can be many corner cases and error cases
– do we even want to specify behavior for all of these?

• depends on the situation
• will discuss stronger vs weaker specs next time…
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You have homework!

• Homework 0, due in dropbox by 1pm Wednesday
– write an algorithm to rearrange array elements as described
– argue in concise, convincing English that it is correct!
– should run in O(n) time

• challenge: can you do it in a single pass?
– do not actually run your code!

• Start learning to reason about the code you write
– this is the one homework that is intentionally difficult
– stop after 2 hours (write up what you tried)

• this HW grade is for participation not results
– this will be easy in a week or so
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To-Do List

Before the next class…

1. Familiarize yourself with website:

http://courses.cs.washington.edu/courses/cse331/16su/ 

– read the syllabus (esp. the advice section)
– read the academic integrity policy
– find the homework list

2. Do HW0 by 1 pm Wednesday!
– limit this to 2 hours
– submit a PDF into the dropbox
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