

SLIDES ADAPTED FROM ALEX
MARIAKAKIS

WITH MATERIAL KELLEN DONOHUE,
DAVID MAILHOT, AND DAN GROSSMAN

Sec$on	6:	
Dijkstra’s	Algorithm	

Review: Shortest Paths with BFS

Desnaon	 Path	 Cost	

A	 <B,A>	 1	

B	 	 0	

C	 <B,A,C>	 2	

D	 <B,D>	 1	

E	 <B,D,E>	 2	

From Node B

A	

B	

C	 D	

E	

1

1

1

11

1

1

Review: Shortest Paths with BFS

Desnaon	 Path	 Cost	

A	 <B,A>	 1	

B	 	 0	

C	 <B,A,C>	 2	

D	 <B,D>	 1	

E	 <B,D,E>	 2	

From Node B

A	

B	

C	 D	

E	

1

1

1

11

1

1

Shortest Paths with Weights

A	

B	

C	 D	

E	

Desnaon	 Path	 Cost	

A	 <B,A>	 2	

B	 	 0	

C	 <B,A,C>	 5	

D	 <B,A,C,D>	 7	

E	 <B,A,C,E>	 7	

From Node B
2

100

2

62

3

100

Paths are not the same!

Shortest Paths with Weights

A	

B	

C	 D	

E	

Desnaon	 Path	 Cost	

A	 <B,A>	 2	

B	 	 0	

C	 <B,A,C>	 5	

D	 <B,A,C,D>	 7	

E	 <B,A,C,E>	 7	

From Node B
2

100

2

62

3

100

Paths are not the same!

Goal: Smallest
cost? Or fewest
edges?

BFS vs. Dijkstra’s

	 BFS	doesn’t	work	because	path	with	minimal	cost	≠	path	with	fewest	edges	

	 Also,	Dijkstra’s	works	if	the	weights	are	non-negaIve	

	 What	happens	if	there	is	a	negaIve	edge?	
◦  Minimize	cost	by	repeaIng	the	cycle	forever	

500	

100	
100	 100	

100	
5	

-10	

1	
1	

Dijkstra’s Algorithm
	 Named	aRer	its	inventor	Edsger	Dijkstra	(1930-2002)	
◦  Truly	one	of	the	“founders”	of	computer	science;	
◦  This	is	just	one	of	his	many	contribuIons	

	 The	idea:	reminiscent	of	BFS,	but	adapted	to	handle	weights	
◦  Grow	the	set	of	nodes	whose	shortest	distance	has	been	computed	
◦  Nodes	not	in	the	set	will	have	a	“best	distance	so	far”	
◦  A	PRIORITY	QUEUE	will	turn	out	to	be	useful	for	efficiency	–	We’ll	cover	this	
later	in	the	slide	deck	

Dijkstra’s Algorithm
1.  For	each	node	v,	set		v.cost = ∞ and	v.known = false

2.  Set	source.cost = 0

3.  While	there	are	unknown	nodes	in	the	graph	
a)  Select	the	unknown	node	v	with	lowest	cost	
b)  Mark	v	as	known	
c)  For	each	edge	(v,u)	with	weight	w,	

c1 = v.cost + w

c2 = u.cost

if(c1 < c2)

 u.cost = c1

 u.path = v

// cost of best path through v to u

// cost of best path to u previously known

// if the new path through v is better, update

A B

D
C

F H

E

G

0	 � � �

�

�

�

�

2 2 3

1 10 2
3

1 11

7

1
9

2

4 5

Order	Added	to	Known	Set:	
	

Example #1

vertex known? cost path
A Y 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞
H ∞

Goal: Fully explore
the graph

A B

D
C

F H

E

G

0	 2	 � �

4	

1	

�

�

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B ≤ 2 A
C ≤ 1 A
D ≤ 4 A
E ∞
F ∞
G ∞
H ∞

A B

D
C

F H

E

G

0	 2	 � �

4	

1	 �

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ∞
F ∞
G ∞
H ∞

�

A B

D
C

F H

E

G

0	 2	 � �

4	

1	

12	

�

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ∞
G ∞
H ∞

A B

D
C

F H

E

G

0	 2	 �

4	

1	

12	

�

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C,	B	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ∞
G ∞
H ∞

�

A B

D
C

F H

E

G

0	 2	 4	 �

4	

1	

12	

�

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C,	B	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ≤ 4 B
G ∞
H ∞

A B

D
C

F H

E

G

0	 2	 4	 �

4	

1	 �

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C,	B,	D	

12	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F ≤ 4 B
G ∞
H ∞

A B

D
C

F H

E

G

0	 2	 4	

4	

1	 �

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C,	B,	D,	F	

12	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ∞
H ∞

�

A B

D
C

F H

E

G

0	 2	 4	 7	

4	

1	 �

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C,	B,	D,	F	

12	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ∞
H ≤ 7 F

A B

D
C

F H

E

G

0	 2	 4	 7	

4	

1	

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C,	B,	D,	F,	H	

12	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ∞
H Y 7 F

�

A B

D
C

F H

E

G

0	 2	 4	 7	

4	

1	 8	

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C,	B,	D,	F,	H	

12	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ≤ 8 H
H Y 7 F

A B

D
C

F H

E

G

0	 2	 4	 7	

4	

1	 8	

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C,	B,	D,	F,	H,	G	

12	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

0	 2	 4	 7	

4	

1	 8	

2 2

1 2
3

7

9
2

4 5

Order	Added	to	Known	Set:	
	
A,	C,	B,	D,	F,	H,	G	

11	

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

0	 2	 4	 7	

4	

1	

11	

8	

2 2

1 2
3

7

9
2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order	Added	to	Known	Set:	
	
A,	C,	B,	D,	F,	H,	G,	E	

3

10

1 11

1

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

11	

8

2 2 3

110	 2
3

1
11	

7

1
9

2

4 5

InterpreYng the Results
vertex known? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

2 2 3

1
3

1
4

A B

C
D

F

E

G

0	 �

�

�

�

�

�

2

1
2 5

1
1

1

2 6
5 3

10

Order	Added	to	Known	Set:	
	

Example #2

vertex known? cost path
A Y 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

A B

C
D

F

E

G

0	 3	

4	

2	

1	
2	

6	

2

1
2 5

1
1

1

2 6
5 3

10

Order	Added	to	Known	Set:	
	
A,	D,	C,	E,	B,	F,	G	

Example #2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = dequeue

 b.known = true
 for each edge (b,a) in G {
 if(!a.known) {
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
 }
 …

Pseudocode A[empt #1

Can We Do Be[er?
	 Increase	efficiency	by	considering	lowest	cost	unknown	vertex	with	
sorIng	instead	of	looking	at	all	verIces	

	 PriorityQueue	is	like	a	queue,	but	returns	elements	by	lowest	value	
instead	of	FIFO	

Priority Queue
	 Increase	efficiency	by	considering	lowest	cost	unknown	
vertex	with	sorIng	instead	of	looking	at	all	verIces	

	 PriorityQueue	is	like	a	queue,	but	returns	elements	by	
lowest	value	instead	of	FIFO	

	 Two	ways	to	implement:	
1.  Comparable	

a)  class	Node	implements	Comparable<Node>	
b)  public	int	compareTo(other)	

2.  Comparator	
a)  class	NodeComparator	extends	Comparator<Node>	
b)  new	PriorityQueue(new	NodeComparator())		

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 if (b.known) continue;
 b.known = true
 for each edge (b,a) in G {
 if(!a.known) {
 add(b.cost + weight((b,a)))
 }
 …

Pseudocode A[empt #2

Homework 7
	 Modify	your	graph	to	use	generics	
◦  Will	have	to	update	HW	#5	and	HW	#6	tests	

	 Implement	Dijkstra’s	algorithm	
◦  Search	algorithm	that	accounts	for	edge	weights	
◦  Note:	This	should	not	change	your	implementaIon	of	Graph.	Dijkstra’s	is	
performed	on	a	Graph,	not	within	a	Graph.	

Homework 7
	 The	more	well-connected	two	characters	are,	the	lower	the	weight	and	
the	more	likely	that	a	path	is	taken	through	them	
◦  The	weight	of	an	edge	is	equal	to	the	inverse	of	how	many	comic	books	the	
two	characters	share	

◦  Ex:	If	Amazing	Amoeba	and	Zany	Zebra	appeared	in	5	comic	books	together,	
the	weight	of	their	edge	would	be	1/5	

Hw7 Important Notes!!!
	 DO	NOT	access	data	from	hw6/src/data	
◦  Copy	over	data	files	from	hw6/src/data	into	hw7/src/data,	and	access	data	
in	hw7	from	there	instead	

◦  Remember	to	do	this!	Or	tests	will	fail	when	grading.	
	

	 DO	NOT	modify	ScriptFileTests.java	

Hw7 Test script Command
Notes
	 HW7	LoadGraph	command	is	slightly	different	from	HW6	
◦  ARer	graph	is	loaded,	there	should	be	at	most	one	directed	edge	from	one	
node	to	another,	with	the	edge	label	being	the	mulIplicaIve	inverse	of	the	
number	of	books	shared	

◦  Example:	If	8	books	are	shared	between	two	nodes,	the	edge	label	will	be	
1/8	

◦  Since	the	edge	relaIonship	is	symmetric,	there	would	be	another	edge	going	
the	other	direcIon	with	the	same	edge	label	

Graph AcYvity
	  List	the	Characters	set,	the	Books->Characters	map,	and	draw	the	graph	using	these	characters	and	
“books”.	

	 Harry				HP1	

	 Harry				HP2	
	 Harry				HP3	

	 Harry				HP4	

	 Quirrel		HP1	

	  Scabbers	HP1	
	  Scabbers	HP2	

	 Voldemort	HP4	

	 Voldemort	SharedAHead	

	 Quirrel			SharedAHead	

Graph AcYvity Answers
	 Characters	
	 Harry,	Quirrel,	Scabbers	

	 Books	->	Characters	

	 HP1	->	Harry,	Quirrel,	Scabbers	

	 HP2	->	Harry,	Scabbers,	
	 HP3	->	Harry	

	 HP4	->	Harry,	Voldemort	

	 SharedAHead	->	Voldemort,	Quirrel	

Graph AcYvity Answers
Vol

Har Qui

Sca

1
1

1

1/2 1

