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LINKS TO DETAILED SETUP 
AND USAGE INSTRUCTIONS

● All References
● http://courses.cs.washington.edu/courses/cse331/16sp/docs.html  

● Working from home (& setup info): Java, Eclipse, SSH
● http://courses.cs.washington.

edu/courses/cse331/16sp/tools/WorkingAtHome.html 
● Editing, Compiling, Running, and Testing Programs

● http://courses.cs.washington.edu/courses/cse331/16sp/tools/editing-
compiling.html 

● Eclipse Reference
● http://courses.cs.washington.

edu/courses/cse331/16sp/tools/eclipse_reference.html 
● Version Control - Git

● http://courses.cs.washington.edu/courses/cse331/16sp/tools/versioncontrol.
html 

● Assignment Submission
● http://courses.cs.washington.edu/courses/cse331/16sp/tools/turnin.html 
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DEVELOPER TOOLS

● Remote access

● Eclipse and Java versions

● Version Control



VERSION CONTROL



WHAT IS VERSION 
CONTROL?
● Also known as source control/revision control
● System for tracking changes to code

○ Software for developing software

● Essential for managing projects
○ See a history of changes
○ Revert back to an older version
○ Merge changes from multiple sources

● We’ll be talking about git/GitLab, but there are 
alternatives
○ Subversion, Mercurial, CVS
○ Email, Dropbox, USB sticks (don’t even think of doing this)



VERSION CONTROL 
ORGANIZATION

● A repository stores the 
master copy of the project
○ Someone creates the repo for a new 

project
○ Then nobody touches this copy directly
○ Lives on a server everyone can access

● Each person clones her 
own working copy
○ Makes a local copy of the repo
○ You’ll always work off of this copy
○ The version control system syncs the 

repo and working copy (with your help)

git

Working 
copy

Working 
copy

Repository



REPOSITORY
● Can create the repository anywhere

○ Can be on the same computer that you’re going to 
work on, which might be ok for a personal project 
where you just want rollback protection

● But, usually you want the repository to be robust:
○ On a computer that’s up and running 24/7

■ Everyone always has access to the project

○ On a computer that has a redundant file system
■ No more worries about that hard disk crash 

wiping away your project!

● We’ll use CSE GitLab – very similar to GitHub but tied to 
CSE accounts and authentication



VERSION CONTROL 
COMMON ACTIONS

Most common commands:
● add / commit / push

○ integrate changes from your working 
copy into the repository

● pull
○ integrate changes into your working 

copy from the repository

Working 
copy

Repository

git

pu
sh

pull



VERSION CONTROL 
UPDATING FILES

In a bit more detail:
● You make some local changes, 

test them, etc., then…
● git add – tell git which changed 

files you want to save in repo
● git commit – save all files you’ve 

“add”ed in the local repo copy 
as an identifiable update

● git push – synchronize with the 
GitLab repo by pushing local 
committed changes

Working 
copy

Repository

git

pu
sh

pull



VERSION CONTROL 
COMMON ACTIONS (CONT.)

Other common commands:
● add, rm

○ add or delete a file in the working copy
○ just putting a new file in your working 

copy does not add it to the repo!
○ still need to commit to make permanent

Working 
copy

Repository

git

pu
sh

pull



THIS QUARTER
• We distribute starter code by adding it to your 

GitLab repo.  You retrieve it with git clone the 
first time then git pull for later assignments

• You will write code using Eclipse 
• You turn in your files by adding them to the 

repo, committing your changes, and eventually 
pushing accumulated changes to GitLab

• You “turn in” an assignment by tagging your 
repo and pushing the tag to GitLab 
• Do this after committing and pushing your files

• You will validate your homework by SSHing onto 
attu, cloning your repo, and running an Ant build 
file



331 VERSION CONTROL
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ECLIPSE



WHAT IS ECLIPSE?
● Integrated development environment (IDE)

● Allows for software development from start to 
finish
○ Type code with syntax highlighting, warnings, etc.
○ Run code straight through or with breakpoints (debug)
○ Break code

● Mainly used for Java
○ Supports C, C++, JavaScript, PHP, Python, Ruby, etc.

● Alternatives
○ NetBeans, Visual Studio, IntelliJIDEA



ECLIPSE SHORTCUTS

Shortcut Purpose
Ctrl + D Delete an entire line
Alt + Shift + R Refactor (rename)
Ctrl + Shift + O Clean up imports
Ctrl + / Toggle comment
Ctrl + Shift + F Make my code look nice ☺



ECLIPSE and Java

● Get Java 8

● Important: Java separates compile and execution, eg:

○ javac Example.java          Example.class
○ Both compile and execute have to be the same Java!

● Please use Eclipse 4.5 (Mars), “Eclipse for Java 
Developers”

● Instructions: http://courses.cs.washington.
edu/courses/cse331/16sp/tools/WorkingAtHome.
html#Step_1

produces

http://courses.cs.washington.edu/courses/cse331/16sp/tools/WorkingAtHome.html#Step_1
http://courses.cs.washington.edu/courses/cse331/16sp/tools/WorkingAtHome.html#Step_1
http://courses.cs.washington.edu/courses/cse331/16sp/tools/WorkingAtHome.html#Step_1
http://courses.cs.washington.edu/courses/cse331/16sp/tools/WorkingAtHome.html#Step_1


331 VERSION 
CONTROL
● Your main repository is on GitLab

● Only clone once (unless you’re working in a 
lot of places)

● Don’t forget to add/commit/push files!
● Do this regularly for backup even before you’re done!

● Check in your work! 



HW 3

● Many small exercises to get you used to version 
control and tools and a Java refresher

● More information on homework instructions: http:
//courses.cs.washington.
edu/courses/cse331/16sp/hws/hw3/hw3.html

● Cloning your repo: Instructions
● Committing changes: Instructions

○ How you turn in your assignments
● Updating changes: Instructions

○ How you retrieve new assignments
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GIT BEST PRACTICES
● Add/commit/push your code EARLY and 

OFTEN!!!
● You really, really, really don’t want to deal with merge 

conflicts
● Keep your repository up-to-date all the time

● Use the combined ‘Commit and Push’ tool in 
Eclipse

● Do not rename folders and files that we gave 
you – this will mess up our grading process and 
you could get a bad score

● Use the repo only for the homework
● Adding other stuff (like notes from lecture) may mess up 

our grading process



Turning in HW3

● Instructions
● Create a hw3-final tag on the last commit and push 

the tag to the repo (this can and should be done in 
Eclipse)
● You can push a new hw3-final tag that overwrites the old one if 

you realize that you still need to make changes (Demo)
● In Eclipse, just remember to check the correct 

checkboxes to overwrite existing tags
● But keep track of how many late days you have left!

● After the final commit and tag pushed, remember to 
log on to attu and run ant validate

http://courses.cs.washington.edu/courses/cse331/16sp/hws/hw3/hw3.html#Problem9
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Turning in HW3

● Add/commit/push your final code

● Create a hw3-final tag on the last commit and push 
the tag to the repo (this can and should be done in 
Eclipse)
● You can push a new hw3-final tag that overwrites the old one if 

you realize that you still need to make changes (Demo)
● In Eclipse, just remember to check the correct 

checkboxes to overwrite existing tags
● But keep track of how many late days you have left!

● After the final commit and tag pushed, remember to 
log on to attu and run ant validate



Ant Validate

● What will this do?
○ You start with a freshly cloned copy of your repo 

and do “git checkout hw3-final” to switch to the 
files you intend for us to grade, then run ant 
validate

○ Makes sure you have all the required files
○ Make sure your homework builds without errors
○ Passes specification and implementation tests in 

the repository
■ Note: this does not include the additional 

tests we will use when grading
■ This is just a sanity check that your current 

tests pass



Ant Validate

● How do you run ant validate?
○ Has to be done on attu from the command line 

since that is the environment your grading will be 
done on

○ Do not use the Eclipse ant validate build tool!

○ Be sure to use a fresh copy of your repo, and 
discard that copy when you’re done

○ If you need to fix things, do it in your primary 
working copy (eclipse)



Ant Validate

● How do you run ant validate?
○ Steps

■ Log into attu via SSH
■ In attu, checkout a brand new local copy (clone) of your 

repository through the command-line
● Note: Now, you have two local copies of your repository, 

one on your computer through Eclipse and one in attu
● May need to create an SSH key on attu and add to GitLab: 

instructions
■ Go to the hw folder which you want to validate through the ‘cd’ 

command, then switch to the hw3 tag
● For example: cd ~/cse331/src/hw3 

git checkout hw3-final

■ Run ant validate

http://courses.cs.washington.edu/courses/cse331/16sp/tools/WorkingAtHome.html#remote-attu
http://courses.cs.washington.edu/courses/cse331/16sp/tools/versioncontrol.html#SetUpCommandLine
https://gitlab.cs.washington.edu/help/ssh/README
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Ant Validate

● How do you know it works?
○ If successful, will output Build Successful at the 

bottom

○ If unsuccessful, will output Build Failed at the 
bottom with information on why
■ If ant validate failed, discard the validate copy 

of the repo on attu, fix and commit changes 
through eclipse, go back to attu, clone a fresh 
copy of the repo, and try ant validate again



ECLIPSE DEBUGGING (if time)

● System.out.println() works for debugging…
○ It’s quick
○ It’s dirty
○ Everyone knows how to do it

● …but there are drawbacks
○ What if I’m printing something that’s null?
○ What if I want to look at something that can’t 

easily be printed (e.g., what does my binary 
search tree look like now)?

● Eclipse’s debugger is powerful…if you know 
how to use it



ECLIPSE DEBUGGING
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