
SECTION 2:
HW3 Setup

cse331-staff@cs.washington.edu

slides borrowed and adapted from Alex Mariakis,CSE 390a,Justin Bare, Deric
Pang, Erin Peach, Vinod Rathnam

mailto:cse331-staff@cs.washington.edu
mailto:cse331-staff@cs.washington.edu

LINKS TO DETAILED SETUP
AND USAGE INSTRUCTIONS

● All References
● http://courses.cs.washington.edu/courses/cse331/16sp/docs.html

● Working from home (& setup info): Java, Eclipse, SSH
● http://courses.cs.washington.

edu/courses/cse331/16sp/tools/WorkingAtHome.html
● Editing, Compiling, Running, and Testing Programs

● http://courses.cs.washington.edu/courses/cse331/16sp/tools/editing-
compiling.html

● Eclipse Reference
● http://courses.cs.washington.

edu/courses/cse331/16sp/tools/eclipse_reference.html
● Version Control - Git

● http://courses.cs.washington.edu/courses/cse331/16sp/tools/versioncontrol.
html

● Assignment Submission
● http://courses.cs.washington.edu/courses/cse331/16sp/tools/turnin.html

http://courses.cs.washington.edu/courses/cse331/16sp/docs.html
http://courses.cs.washington.edu/courses/cse331/16sp/docs.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/WorkingAtHome.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/WorkingAtHome.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/WorkingAtHome.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/editing-compiling.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/editing-compiling.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/editing-compiling.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/eclipse_reference.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/eclipse_reference.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/eclipse_reference.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/versioncontrol.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/versioncontrol.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/versioncontrol.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/turnin.html
http://courses.cs.washington.edu/courses/cse331/16wi/tools/turnin.html

DEVELOPER TOOLS

● Remote access

● Eclipse and Java versions

● Version Control

VERSION CONTROL

WHAT IS VERSION
CONTROL?
● Also known as source control/revision control
● System for tracking changes to code

○ Software for developing software

● Essential for managing projects
○ See a history of changes
○ Revert back to an older version
○ Merge changes from multiple sources

● We’ll be talking about git/GitLab, but there are
alternatives
○ Subversion, Mercurial, CVS
○ Email, Dropbox, USB sticks (don’t even think of doing this)

VERSION CONTROL
ORGANIZATION

● A repository stores the
master copy of the project
○ Someone creates the repo for a new

project
○ Then nobody touches this copy directly
○ Lives on a server everyone can access

● Each person clones her
own working copy
○ Makes a local copy of the repo
○ You’ll always work off of this copy
○ The version control system syncs the

repo and working copy (with your help)

git

Working
copy

Working
copy

Repository

REPOSITORY
● Can create the repository anywhere

○ Can be on the same computer that you’re going to
work on, which might be ok for a personal project
where you just want rollback protection

● But, usually you want the repository to be robust:
○ On a computer that’s up and running 24/7

■ Everyone always has access to the project

○ On a computer that has a redundant file system
■ No more worries about that hard disk crash

wiping away your project!

● We’ll use CSE GitLab – very similar to GitHub but tied to
CSE accounts and authentication

VERSION CONTROL
COMMON ACTIONS

Most common commands:
● add / commit / push

○ integrate changes from your working
copy into the repository

● pull
○ integrate changes into your working

copy from the repository

Working
copy

Repository

git

pu
sh

pull

VERSION CONTROL
UPDATING FILES

In a bit more detail:
● You make some local changes,

test them, etc., then…
● git add – tell git which changed

files you want to save in repo
● git commit – save all files you’ve

“add”ed in the local repo copy
as an identifiable update

● git push – synchronize with the
GitLab repo by pushing local
committed changes

Working
copy

Repository

git

pu
sh

pull

VERSION CONTROL
COMMON ACTIONS (CONT.)

Other common commands:
● add, rm

○ add or delete a file in the working copy
○ just putting a new file in your working

copy does not add it to the repo!
○ still need to commit to make permanent

Working
copy

Repository

git

pu
sh

pull

THIS QUARTER
• We distribute starter code by adding it to your

GitLab repo. You retrieve it with git clone the
first time then git pull for later assignments

• You will write code using Eclipse
• You turn in your files by adding them to the

repo, committing your changes, and eventually
pushing accumulated changes to GitLab

• You “turn in” an assignment by tagging your
repo and pushing the tag to GitLab
• Do this after committing and pushing your files

• You will validate your homework by SSHing onto
attu, cloning your repo, and running an Ant build
file

331 VERSION CONTROL

Repository

create/push

Working copy

co
m

m
it/

pu
sh

clone/pull
add

pull

Working copy for
grading

ECLIPSE

WHAT IS ECLIPSE?
● Integrated development environment (IDE)

● Allows for software development from start to
finish
○ Type code with syntax highlighting, warnings, etc.
○ Run code straight through or with breakpoints (debug)
○ Break code

● Mainly used for Java
○ Supports C, C++, JavaScript, PHP, Python, Ruby, etc.

● Alternatives
○ NetBeans, Visual Studio, IntelliJIDEA

ECLIPSE SHORTCUTS

Shortcut Purpose
Ctrl + D Delete an entire line
Alt + Shift + R Refactor (rename)
Ctrl + Shift + O Clean up imports
Ctrl + / Toggle comment
Ctrl + Shift + F Make my code look nice ☺

ECLIPSE and Java

● Get Java 8

● Important: Java separates compile and execution, eg:

○ javac Example.java Example.class
○ Both compile and execute have to be the same Java!

● Please use Eclipse 4.5 (Mars), “Eclipse for Java
Developers”

● Instructions: http://courses.cs.washington.
edu/courses/cse331/16sp/tools/WorkingAtHome.
html#Step_1

produces

http://courses.cs.washington.edu/courses/cse331/16sp/tools/WorkingAtHome.html#Step_1
http://courses.cs.washington.edu/courses/cse331/16sp/tools/WorkingAtHome.html#Step_1
http://courses.cs.washington.edu/courses/cse331/16sp/tools/WorkingAtHome.html#Step_1
http://courses.cs.washington.edu/courses/cse331/16sp/tools/WorkingAtHome.html#Step_1

331 VERSION
CONTROL
● Your main repository is on GitLab

● Only clone once (unless you’re working in a
lot of places)

● Don’t forget to add/commit/push files!
● Do this regularly for backup even before you’re done!

● Check in your work!

HW 3

● Many small exercises to get you used to version
control and tools and a Java refresher

● More information on homework instructions: http:
//courses.cs.washington.
edu/courses/cse331/16sp/hws/hw3/hw3.html

● Cloning your repo: Instructions
● Committing changes: Instructions

○ How you turn in your assignments
● Updating changes: Instructions

○ How you retrieve new assignments

http://courses.cs.washington.edu/courses/cse331/16sp/hws/hw3/hw3.html
http://courses.cs.washington.edu/courses/cse331/16sp/hws/hw3/hw3.html
http://courses.cs.washington.edu/courses/cse331/16sp/hws/hw3/hw3.html
http://courses.cs.washington.edu/courses/cse331/16sp/hws/hw3/hw3.html
https://courses.cs.washington.edu/courses/cse331/16sp/tools/versioncontrol.html#SetUp
https://courses.cs.washington.edu/courses/cse331/16sp/tools/versioncontrol.html#Commit
https://courses.cs.washington.edu/courses/cse331/16sp/tools/versioncontrol.html#Update

GIT BEST PRACTICES
● Add/commit/push your code EARLY and

OFTEN!!!
● You really, really, really don’t want to deal with merge

conflicts
● Keep your repository up-to-date all the time

● Use the combined ‘Commit and Push’ tool in
Eclipse

● Do not rename folders and files that we gave
you – this will mess up our grading process and
you could get a bad score

● Use the repo only for the homework
● Adding other stuff (like notes from lecture) may mess up

our grading process

Turning in HW3

● Instructions
● Create a hw3-final tag on the last commit and push

the tag to the repo (this can and should be done in
Eclipse)
● You can push a new hw3-final tag that overwrites the old one if

you realize that you still need to make changes (Demo)
● In Eclipse, just remember to check the correct

checkboxes to overwrite existing tags
● But keep track of how many late days you have left!

● After the final commit and tag pushed, remember to
log on to attu and run ant validate

http://courses.cs.washington.edu/courses/cse331/16sp/hws/hw3/hw3.html#Problem9
http://courses.cs.washington.edu/courses/cse331/16sp/hws/hw3/hw3.html#Problem9

Turning in HW3

● Add/commit/push your final code

● Create a hw3-final tag on the last commit and push
the tag to the repo (this can and should be done in
Eclipse)
● You can push a new hw3-final tag that overwrites the old one if

you realize that you still need to make changes (Demo)
● In Eclipse, just remember to check the correct

checkboxes to overwrite existing tags
● But keep track of how many late days you have left!

● After the final commit and tag pushed, remember to
log on to attu and run ant validate

Ant Validate

● What will this do?
○ You start with a freshly cloned copy of your repo

and do “git checkout hw3-final” to switch to the
files you intend for us to grade, then run ant
validate

○ Makes sure you have all the required files
○ Make sure your homework builds without errors
○ Passes specification and implementation tests in

the repository
■ Note: this does not include the additional

tests we will use when grading
■ This is just a sanity check that your current

tests pass

Ant Validate

● How do you run ant validate?
○ Has to be done on attu from the command line

since that is the environment your grading will be
done on

○ Do not use the Eclipse ant validate build tool!

○ Be sure to use a fresh copy of your repo, and
discard that copy when you’re done

○ If you need to fix things, do it in your primary
working copy (eclipse)

Ant Validate

● How do you run ant validate?
○ Steps

■ Log into attu via SSH
■ In attu, checkout a brand new local copy (clone) of your

repository through the command-line
● Note: Now, you have two local copies of your repository,

one on your computer through Eclipse and one in attu
● May need to create an SSH key on attu and add to GitLab:

instructions
■ Go to the hw folder which you want to validate through the ‘cd’

command, then switch to the hw3 tag
● For example: cd ~/cse331/src/hw3

git checkout hw3-final

■ Run ant validate

http://courses.cs.washington.edu/courses/cse331/16sp/tools/WorkingAtHome.html#remote-attu
http://courses.cs.washington.edu/courses/cse331/16sp/tools/versioncontrol.html#SetUpCommandLine
https://gitlab.cs.washington.edu/help/ssh/README
https://gitlab.cs.washington.edu/help/ssh/README

Ant Validate

● How do you know it works?
○ If successful, will output Build Successful at the

bottom

○ If unsuccessful, will output Build Failed at the
bottom with information on why
■ If ant validate failed, discard the validate copy

of the repo on attu, fix and commit changes
through eclipse, go back to attu, clone a fresh
copy of the repo, and try ant validate again

ECLIPSE DEBUGGING (if time)

● System.out.println() works for debugging…
○ It’s quick
○ It’s dirty
○ Everyone knows how to do it

● …but there are drawbacks
○ What if I’m printing something that’s null?
○ What if I want to look at something that can’t

easily be printed (e.g., what does my binary
search tree look like now)?

● Eclipse’s debugger is powerful…if you know
how to use it

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

•

•

•

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

