Section 1: Code Reasoning

cse331-staff@cs.washington.edu

Today's Goals

- Review of code reasoning
- Practice forward and backward reasoning on straight-line and if-statement code
- Practice identifying the strongest assertion

Before we begin . . .
 - "=" vs. "=="

- Read the lecture notes

Reasoning About Code

- Two purposes
- Prove our code is correct
- Understand why code is correct
- Forward reasoning: determine what follows from initial conditions
- Backward reasoning: determine sufficient conditions to obtain a certain result

Worksheet

- Problems 1 through 4
- 15 Minutes - get as far as you can
- You can collaborate with other students
- Grab a TA if you feel stuck

$$
\begin{aligned}
& \text { FOrward Reasoning } \\
& \{x>=0, y>=0\} \\
& y=16 ; \\
& \{x>=0, y=16\} \\
& x=x+y \\
& \{x>=16, y=16\} \\
& x=\operatorname{sqrt}(x) \\
& \{x>=4, y=16\} \\
& y=y-x \\
& \{x>=4, y<=12\}
\end{aligned}
$$

Forward Reasoning

```
{true}
if (x > 0) {
    {x > 0}
        abs = x
    {x>0, abs = x}
}
else {
    {x <= 0}
    abs = -x
    {x <= 0, abs = -x}
}
{x > 0, abs = x OR x <= 0, abs = -x}
{abs = |x|}
```


Backward Reasoning

$\{x+3 b-4>0\}$
$\mathrm{a}=\mathrm{x}+\mathrm{b}$;
$\{a+2 b-4>0\}$
$c=2 b-4$
$\{a+c>0\}$
$x=a+c$
$\{x>0\}$

$$
\begin{aligned}
& \text { Backward Reasoning } \\
& \{y>15 \text { || (y <= } 5 \& \& y+z>17)\} \\
& \text { if (y > 5) \{ } \\
& \text { \{y > 15\} } \\
& \mathbf{x}=\mathbf{y}+2 \\
& \text { \{x > 17\} } \\
& \text { \} } \\
& \text { else \{ } \\
& \{y+z>17\} \\
& \mathbf{x}=\mathbf{y}+\mathbf{z} \text {; } \\
& \text { \{x > 17\} } \\
& \text { \} } \\
& \text { \{x > 17\} }
\end{aligned}
$$

Implication

- Hoare triples are just an extension of logical implication
- Hoare triple: $\{P\}$ S $\{Q\}$
- $P \rightarrow Q$ after statement S
- Everything implies true

P	Q	$\mathrm{P} \rightarrow \mathrm{Q}$
T	T	T
T	F	F
F	T	T
F	F	T

- False implies everything

Weaker vs. Stronger

- If P1 \rightarrow P2, then
- P1 is stronger than P2
- P2 is weaker than P1
- Weaker statements are more general
- Stronger statements are more restrictive

Worksheet

- Problem 5

Worksheet

- "I attend quiz sections." "I attend quiz sections on Thursdays."
- "y > 23"
" $y>=23$ "
- "y = 23"
" $y>=23$ "
- "y<0.00023"
" $y<0.23$ "
- "y is prime"
" $y<=17$ "

Worksheet

- "I attend quiz sections." "I attend quiz sections on Thursdays."
- "y > 23"
- "y = 23"
" $y>=23$ "
- " $y<0.00023$ "
" $y>=23$ "
" $y<0.23$ "
- "y is prime"
" $y<=17$ "

Worksheet

- "I attend quiz sections." "I attend quiz sections on Thursdays."
- "y>23"
" $y>=23$ "
- "y = 23"
" $y>=23$ "
- "y<0.00023"
" $y<0.23$ "
- "y is prime"
" $y<=17$ "

Worksheet

- "I attend quiz sections." "I attend quiz sections on Thursdays."
- " $y>23$ "
" $y>=23$ "
- "y=23"
" $y>=23$ "
- "y<0.00023"
" $y<0.23$ "
- "y is prime"
" $y<=17$ "

Worksheet

- "I attend quiz sections." "I attend quiz sections on Thursdays."
- " $y>23$ "
" $y>=23$ "
- "y = 23"
" $y>=23$ "
- " $y<0.00023 "$
" $y<0.23$ "
- "y is prime"

$$
\text { " } y<=17 "
$$

Worksheet

- "I attend quiz sections." "I attend quiz sections on Thursdays."
- " $y>23$ "
" $y>=23$ "
- "y=23"
" $y>=23$ "
- " $y<0.00023$ "
" $y<0.23$ "
- "y is prime"

$$
\text { " } y<=17 \text { " -- ? }
$$

Weakest Precondition

- The most lenient assumptions such that a postcondition will be satisfied
- If P^{*} is the weakest precondition for $\{P\} S\{Q\}$, then $P \rightarrow P^{*}$ for all P that make the Hoare triple valid
- Notation: WP = wp(S, Q)

Weakest Precondition
 $$
w p\left(x=y^{\star} y, x>4\right)
$$

Weakest Precondition
 wp ($x=y^{\star} y, x>4$)
 $|y|>2$

$$
\begin{aligned}
& \quad \text { Weakest Precondition } \\
& w p\left(x=y^{*} y, x>4\right) \\
& |y|>2 \\
& w p(y=x+1 ; z=y-3, z=10)
\end{aligned}
$$

Weakest Precondition

$$
\begin{aligned}
& \text { wp }\left(x=y^{\star} y, x>4\right) \\
& |y|>2 \\
& w p(y=x+1 ; z=y-3, z=10) \\
& \text { wp }(y=x+1, \quad w p(z=y-3, z=10)) \\
& \text { wp }(y=x+1, y-3=10) \\
& \operatorname{wp}(y=x+1, y=13) \\
& x=12
\end{aligned}
$$

Questions

