
	 CSE	331	Reasoning	About	Code	I	 1	

CSE	331	Spring	2016	–	Reasoning	About	Code	I	
Notes	by	Krysta	Yousoufian	

Original	lectures	by	Hal	Perkins	
Additional	contributions	from	Michael	Ernst,	David	Notkin,	and	Dan	Grossman	

These	notes	cover	most	of	the	same	material	in	the	“Lecture	2”	slides,	in	a	slightly	different	order	and	
with	a	slightly	different	emphasis.		You	are	responsible	for	this	material.	

Assertions	

In	the	first	lecture	we	started	with	the	example	of	writing	a	max()	function	for	an	array	of	integers.	
Suppose	you	write	this	code	and	bring	it	to	your	boss.	She	says,	“Prove	to	me	that	it	works.”	OK…	how	
do	you	do	that?	You	could	(and	surely	would)	run	some	tests	on	sample	input,	but	there	are	effectively	
an	infinite	number	of	possible	inputs.	Tests	are	useful,	but	they	can’t	prove	that	your	code	works	in	all	
possible	scenarios.	

This	is	where	reasoning	about	code	comes	in.	Instead	of	running	your	code,	you	step	back	and	read	it.	
You	ask:	“What	is	guaranteed	to	be	true	at	this	point	in	the	program,	based	on	the	statements	before	
it?”	Or,	going	in	the	in	other	direction:	“If	I	want	to	guarantee	that	some	fact	Q	is	true	at	this	point	in	the	
program,	what	must	be	true	earlier	to	provide	that	guarantee?”	You’ve	surely	done	some	of	this	
naturally.	Now	you’ll	learn	to	do	it	in	a	more	structured	way	with	techniques	to	help.	

Let’s	start	with	a	simple	code	example:	
x	=	17;	
y	=	42;	
z	=	x+y;	

At	each	point	before/after/in	between	statements,	what	do	we	know	about	the	state	of	the	program,	
specifically	the	values	of	variables?	Since	we’re	looking	at	this	chunk	of	code	in	isolation,	we	don’t	know	
anything	before	it	executes.	After	the	first	line	executes,	we	know	that	x	=	17.	After	the	second	line	
executes,	we	still	know	that	x	=	17,	and	we	know	that	y	=	42	too.	After	the	third	line	executes,	we	also	
know	that	z	=	17	+	42	=	59.	We	annotate	the	code	to	show	this	information:	

{	true	}		
x	=	17;	
{	x	=	17	}	
y	=	42;	
{	x	=	17	Λ	y	=	42	}	
z	=	x+y;	
{	x	=	17	Λ	y	=	42	Λ	z	=	59	}	

Each	logical	formula	shows	what	must	be	true	at	that	point	in	
the	program.	Since	we	don’t	know	anything	at	the	beginning,	
only	“true”	itself	must	be	true,	so	we	simply	write	{true}.	

An	aside:	notation	
If	this	notation	is	unfamiliar	to	you:	
				Λ	means	AND	
				V	means	OR	
A	way	to	remember	which	symbol	
is	which	is	that	the	AND	symbol	
looks	like	the	letter	A.	



	 CSE	331	Reasoning	About	Code	I	 2	

Each	of	the	lines	with	curly	braces	is	an	assertion.	An	assertion	is	a	logical	formula	inserted	at	some	
point	in	a	program.	It	is	presumed	to	hold	true	at	that	point	in	the	program.	There	are	two	special	
assertions:	the	precondition	and	the	postcondition.	A	precondition	is	an	assertion	inserted	prior	to	
execution,	and	a	postcondition	is	an	assertion	inserted	after	execution.	In	the	example	above,	{true}	is	
the	precondition	and	{	x	=	17	Λ	y	=	42	Λ	z	=	59	}	is	the	postcondition.	All	other	assertions	are	called	
intermediate	assertions.	They	serve	as	steps	as	you	reason	between	precondition	and	postcondition,	
kind	of	like	the	intermediate	steps	in	a	math	problem	that	show	how	you	get	from	problem	to	solution.	

Forward	and	backward	reasoning	

The	process	we	just	followed	is	called	forward	reasoning.	We	simulated	the	execution	of	the	program,	
considering	each	statement	in	the	order	they	would	actually	be	executed.	The	disadvantage	of	forward	
reasoning	is	that	the	assertions	may	accumulate	a	lot	of	irrelevant	facts	as	you	move	through	the	
program.	You	don’t	know	which	parts	of	the	assertions	will	come	in	handy	to	prove	something	later	and	
which	parts	won’t.	As	a	result,	you	often	end	up	listing	everything	you	know	about	the	program.	

This	happens	in	forward	reasoning	because	you	don’t	know	where	you’re	trying	to	go	–	what	you’re	
trying	to	prove.	But	when	we	write	a	block	of	code,	we	usually	have	a	clear	idea	of	what’s	supposed	to	
be	true	after	it	executes.	In	other	words,	we	know	the	postcondition	already,	and	we	want	to	prove	that	
the	expected	postcondition	will	indeed	hold	true	given	the	appropriate	precondition.	For	this	reason,	
backward	reasoning	is	often	more	useful	than	forward	reasoning,	though	perhaps	less	intuitive.	

In	backward	reasoning,	you	effectively	push	the	postcondition	up	through	the	statements	to	determine	
the	precondition.	You	start	by	writing	down	the	postcondition	you	want	at	the	end	of	the	block.	Then	
you	look	at	the	last	statement	in	the	block	and	ask,	“For	the	postcondition	to	be	true	after	this	
statement	is	executed,	what	must	be	true	before	it?”	You	write	that	down,	move	up	to	the	next	
statement,	and	ask	again:	“For	the	assertion	after	this	statement	to	be	true,	what	must	be	true	before	
it?”	You	keep	going	until	you’ve	reached	the	top	of	the	statement	list.	Whatever	must	be	true	before	the	
first	statement	is	the	precondition.	You	have	guaranteed	that	if	this	precondition	is	satisfied	before	the	
block	of	code	is	executed,	then	the	postcondition	will	be	satisfied	afterward.	

For	example,	let’s	look	at	this	two-line	block	of	code:	

x	=	y;	
x	=	x	+	1;	
{	x	>	0	}	

The	postcondition	is	x	>	0.	We	want	to	know	what	must	be	true	beforehand	for	the	postcondition	to	be	
satisfied.	We	start	with	the	last	statement:	x	=	x	+	1.		If	x	>	0	afterward,	then	the	value	assigned	to	x	
(namely,	x+1)	must	be	>	0	beforehand.	We	add	this	assertion:		

x	=	y;	
{	x	+	1	>	0	}	
x	=	x	+	1;	
{	x	>	0	}	



	 CSE	331	Reasoning	About	Code	I	 3	

Now	we	look	at	the	second-to-last	statement:	x	=	y.	If	x	+	1	>	0	after	this	statement,	then	[the	value	
assigned	to	x]	+	1	>	0	beforehand.	That	is,	y	+	1	>	0.	We	add	this	assertion:		

{	y	+	1	>	0	}	
x	=	y;	
{	x	+	1	>	0	}	
x	=	x	+	1;	
{	x	>	0	}	

Since	there	are	no	more	statements,	we’re	done.	We	have	proven	that	if	y	+	1	>	0	before	this	block	of	
code	executes,	then	x	>	0	afterward.	

Weakest	precondition	

In	the	example	above,	y	+	1	>	0	is	not	the	only	valid	precondition.	How	about	the	precondition	y	=	117?	
Or	y	>	100?	These,	too,	guarantee	the	postcondition.	Technically	they’re	correct,	but	intuitively	they’re	
not	as	useful.	They	are	more	restrictive	about	the	values	of	y	for	which	the	program	is	guaranteed	to	be	
correct.	We	usually	want	to	use	the	precondition	that	guarantees	correctness	for	the	broadest	set	of	
inputs.	Stated	differently,	we	want	the	weakest	precondition:	the	most	general	precondition	needed	to	
establish	the	postcondition.	The	terms	“weak”	and	“strong”	refer	to	how	general	or	specific	an	assertion	
is.	The	weaker	an	assertion	is,	the	more	general	it	is;	the	stronger	it	is,	the	more	specific	it	is.	We	write	
P	=	wp(S,Q)	to	indicate	that	P	is	the	weakest	precondition	for	statement	S	and	postcondition	Q.	

In	our	example,	y	+	1	>	0	is	the	weakest	precondition.	The	precondition	y	>	100	is	not	as	weak	because	it	
allows	only	a	subset	of	the	values	accepted	by	y	+	1	>	0.	The	precondition	y	=	117	is	the	strongest	of	
these	three	assertions	because	it	allows	only	a	single	value	that	was	accepted	by	either	of	the	other	two	
assertions.	

Hoare	triples	

To	formalize	all	this	talk	about	assertions,	we	introduce	something	called	a	Hoare	triple,	named	for	Tony	
Hoare.	(Hoare	also	invented	quicksort	and	many	other	cool	things.)	A	Hoare	triple,	written	{P}	S	{Q},	
consists	of	a	precondition	P,	a	statement	S,	and	a	postcondition	Q.	In	a	valid	Hoare	triple,	if	S	is	executed	
in	a	state	where	P	is	true,	then	Q	is	guaranteed	to	be	true	
afterwards.	For	example:	

{	x	!=	0	}	 P	
y	=	x*x;		 S	
{	y	>	0	}		 Q	

If	S	is	executed	in	a	state	where	P	is	false,	Q	might	be	true	or	it	
might	be	false;	a	valid	Hoare	triple	doesn’t	have	to	promise	
anything	either	way.	On	the	other	hand,	a	Hoare	triple	is	invalid	if	
there	can	be	a	scenario	where	P	is	true,	S	is	executed,	and	Q	is	false	
afterwards.	For	example,	consider	the	initial	state	x	=	1,	y	=	-1	for	

An	aside:	{P}	S	{Q}	versus	P	{S}	Q	
In	other	places,	you	may	see	curly	braces	
used	for	statements	instead	of	assertions.	
Hoare	used	both	conventions	in	his	original	
paper	to	mean	slightly	different	things.	The	
difference	is	subtle,	and	for	the	purposes	of	
this	course	it’s	just	important	to	pick	one	
convention	and	stick	with	it.		We	chose	to	
put	the	curly	braces	around	assertions,	and	
you	should	do	the	same	in	this	class.	



	 CSE	331	Reasoning	About	Code	I	 4	

this	invalid	Hoare	triple:	

{	x	>	0	}	 	 1	>	0;	P	is	satisfied	(note	that	P	says	nothing	about	y)	
x	=	y;	 	 x	=	-1	
{	x	>	0	}	 	 -1	<	0;	Q	is	not	satisfied.	Invalid	Hoare	triple!	

To	give	a	subtler	example	of	an	invalid	Hoare	triple:	

{	x	>=	0	}	 Invalid	Hoare	triple	
y	=	2*x;	
{	y	>	x	}	

Suppose	x	=	0	in	the	initial	state.	P	is	satisfied	initially,	but	afterward	y	=	0	=	x	and	Q	is	not	satisfied.	If	we	
change	Q	from	y	>	x	to	y	>=	x,	then	the	Hoare	triple	becomes	valid.	

IF/ELSE	statements	

So	far,	we	have	only	looked	at	sequences	of	assignment	statements	executed	one	after	another.	We	will	
now	consider	Hoare	triples	involving	if/else	statements:	

	 {P}	if	(B)	S1	else	S2	{Q}	

When	reasoning	about	if/else	statements,	once	again	it	helps	to	add	an	intermediate	assertion	
before/after	each	line	of	code.	We	give	the	complete	structure	below,	followed	by	an	explanation	of	
each	new	line:	

	 {P}	
	 if	(B)	
	 	 {	P	Λ	B	}	

S1;	
{Q1}	

else	
	 {	P	Λ	!B	}	
	 S2;	
	 {Q2}	
	
{Q1}	V	{Q2}	=>	{Q}	

		 {Q}	

What	do	we	know	immediately	after	entering	the	IF	case	containing	S1?	We	know	that	B	is	true,	or	we	
wouldn’t	have	reached	this	point.	We	also	know	that	P	is	true,	because	we	haven’t	executed	any	code	
that	could	break	it.	(We	assume	that	evaluating	a	condition	like	B	only	produces	a	result	and	has	no	side	
effects,	i.e.,	it	does	not	change	the	state	of	the	program.)	So,	we	have	the	assertion	P	Λ	B.	What	do	we	
know	immediately	after	entering	the	ELSE	case	containing	S2?	Again,	P	must	still	be	true,	and	B	must	be	
false	to	have	entered	the	ELSE	case.	So,	we	have	the	assertion	P	Λ	!B.	

What	about	Q1	and	Q2,	and	that	funny	line	with	the	arrow	(=>)?	The	postconditions	Q1	and	Q2	indicate	
what’s	known	after	S1	or	S2	is	executed,	respectively.	Because	we	always	execute	one	case	or	the	other,	



	 CSE	331	Reasoning	About	Code	I	 5	

we	can	be	sure	that	Q1	or	Q2	will	be	true	after	executing	the	entire	IF/ELSE	statement.	So	to	conclude	
that	Q	always	holds	true,	we	just	need	to	show	that	Q	is	true	as	long	as	either	Q1	or	Q2	is	true.	Written	
formally,	{Q1}	V	{Q2}	=>	Q.	If	you’ve	never	seen	this	notation	before,	it	is	read	as	“Q1	or	Q2	implies	Q.”	It	
means	that	if	(Q1	V	Q2)	is	true,	then	Q	is	also	true.	In	other	words,	if	Q1	is	true	then	Q	is	true,	and	if	Q2	
is	true	then	Q	is	true.	(If	neither	Q1	nor	Q2	is	true,	we	don’t	know	anything	about	Q	–	it	could	be	true	or	
false.)	

Notice	that	{Q1}	V	{Q2}	=>	{Q}	is	the	second-to-last	line	in	our	annotated	IF/ELSE	block.	This	indicates	
that	to	prove	that	Q	always	holds,	we	need	to	demonstrate	that	(Q1	V	Q2)	=>	Q.	

As	an	example,	let’s	consider	writing	code	to	compute	the	maximum	of	two	variables	x	and	y	and	store	it	
in	a	variable	m.	We	want	to	prove	that	the	code	works	correctly.	It	should	work	for	all	inputs,	so	we	
have	the	trivial	precondition	{true}.	The	postcondition	is	{	m	=	max(x,y)	},	or	stated	more	explicitly,	{	
(m=x		Λ		x	>=	y)		V		(m=y	Λ	y	>=x)	}.	Try	writing	this	code	and	annotating	it	with	the	pattern	above	to	
prove	that	Q	always	holds	before	reading	further.	

One	possible	solution:	

{true}	
if	(x	>	y)	
	 {	true	Λ	x	>	y	}	=>	{	x	>	y	}	
	 m	=	x;	
	 {	Q1:	m	=	x	Λ	x	>	y	}	
else	
	 {	true	Λ	x	<=	y	}	=>	{	x	<=	y	}	
	 m	=	y;	

{	Q2:	m	=	y	Λ	x	<=	y	}	
//	{	Q1	V	Q2	}	=>	{	Q	}	trivially	

	 {Q1	V	Q2	}	=	{		(m	=	x	Λ	x	>	y)	V	(m	=	y	Λ	x	<=	y)		}	
	 	 =>	{	m	=	max(x,y)	}	

If	{Q1	V	Q2}	matches	{Q}	exactly,	you	cans	imply	write	“{Q1	V	Q2}	=>	{Q}	trivially”	above	the	final	
assertion	containing	{Q}.		Otherwise	you	should	write	out	{Q1	V	Q2}	(replacing	Q1	and	Q2	with	their	
actual	values)	and	include	any	intermediate	steps	needed	to	show	how	{Q1	V	Q2}	=>	Q,	as	we	did	above.		
The	important	point	is	to	make	your	reasoning	clear	to	the	reader.	

Summary	so	far:	Rules	for	finding	the	weakest	precondition	

When	we	reason	about	code,	we	usually	want	to	find	the	weakest	precondition.	Even	if	we’re	trying	to	
show	that	our	code	works	in	all	initial	states	with	no	precondition,	this	can	be	approached	as	finding	a	
weakest	precondition	of	{true}.	For	each	type	of	statement,	we	need	a	rule	for	how	to	find	the	weakest	
precondition.	

	

	



	 CSE	331	Reasoning	About	Code	I	 6	

Assignment	statements	

We	want	to	find	P	=	wp(x=e,	Q).	Here,	e	represents	an	expression	rather	than	a	variable,	so	it	could	be	
replaced	with	a	constant,	a	variable,	a	sum	of	variables	…	anything	that	can	go	on	the	right-hand	side	of	
an	assignment	statement.	As	in	earlier	examples,	anything	that	is	true	of	x	after	the	assignment	
statement	must	be	true	of	the	value	assigned	to	x	beforehand.	The	weakest	precondition	P	is	simply	Q	
with	all	free	occurrences	of	x	replaced	by	e.		

	 wp(x=e,	Q)	=	Q	with	all	free	occurrences	of	x	replaced	by	e	

For	example,	to	find	wp(x=y+1,	x	>	0)	we	replace	x	with	y+1	in	the	postcondition	x	>	0,	obtaining	the	
weakest	precondition	y+1	>	0.	

Try	the	problems	below.		Starting	with	each	postcondition	and	statements,	fill	in	the	intermediate	
assertions	and	weakest	precondition:	

x	=	x	-	2;	 	 	 x	=	2	*	y;	 	 	 w	=	2	*	w;	
z	=	x	+	1;	 	 	 z	=	x	+	y;	 	 	 z	=	-w;	
{	z	!=	0	}		 	 	 {	z	>	0	}	 	 	 	 y	=	v	+	1;	
	 	 	 	 	 	 	 	 x	=	min(y,	z);	
	 	 	 	 	 	 	 	 {	x	<	0	}	

The	solutions	are:		

{	x	!-	1	}		 	 	 {	y	>	0	}		 	 	 {	v	<	-1	V	w	>	0	}	
x	=	x	-	2;	 	 	 x	=	2	*	y;	 	 	 w	=	2	*	w;	
{	x	!=	-1	}	 	 	 {	x	+	y	>	0	}	 	 	 {	v	<	-1	V	w	>	0	}	
z	=	x	+	1;	 	 	 z	=	x	+	y;	 	 	 z	=	-w;	
{	z	!=	0	}		 	 	 {	z	>	0	}	 	 	 	 {	v	<	-1	V	z	<	0	}	

y	=	v	+	1;	
{	y	<	0	V	z	<	0	}	

	 	 	 	 	 	 	 	 x	=	min(y,	z);	
	 	 	 	 	 	 	 	 {	x	<	0	}	
	

Statement	lists	

We	want	to	find	the	weakest	precondition	for	two	consecutive	statements,	P	=	wp(S1;	S2,	Q).	It	helps	to	
break	down	the	problem	by	adding	an	intermediate	assertion	between	S1	and	S2,	giving:	

	 {P}	S1	{X}	S2	{Q}		

Then	we	work	backwards.	We	start	by	finding	the	weakest	precondition	for	S2	and	use	this	for	X,	i.e.	X	=	
wp(S2,	Q).	Next,	we	use	X	as	the	postcondition	for	S1	and	find	wp(S1,	X).	The	result	will	be	the	weakest	
precondition	for	the	series	of	statements	S1;S2.	Replacing	X	in	wp(S1,	X),	we	get:	

	 wp(S1;S2,	Q)	=	wp(S1,	wp(S2,Q))	



	 CSE	331	Reasoning	About	Code	I	 7	

	

If/else	statements	

We	want	to	find	the	weakest	precondition	for	an	if/else	statement	wp(IF,	Q).	As	before,	we	write	the	
statement	as	

if	(B)	S1	else	S2	

Suppose	B	is	true.	Because	S1	is	executed	and	Q	must	be	true	afterward,	the	weakest	precondition	for	
the	entire	IF	statement	will	be	the	weakest	precondition	for	S1	and	Q,	i.e.	wp(S1,	Q).	Analogously,	if	B	is	
false	the	weakest	precondition	will	be	wp(S2,	Q).	Putting	these	two	cases	together,	the	weakest	
precondition	for	the	entire	if/else	statement	is	wp(S1,Q)	when	B	is	true	and	wp(S2,	Q)	when	B	is	false.	
Written	formally:	

	 wp(IF,	Q)	=	(	B	=>	wp(S1,Q)		Λ		!B	=>	wp(S2,Q))	
	 	 			=	(B	Λ	wp(S1,	Q))		V		(!B		Λ		wp(S2,	Q))	
	

For	example,	find	the	weakest	precondition	for	this	conditional	statement	and	postcondition:	

if	(x	<	5)	
	 x	=	x*x;	
else	
	 x	=	x+1;	
{	x	>=	9	}	

Using	the	formula	above:	

wp(IF,	x	>=	9)	=	(x	<	5	Λ	wp(x	=	x*x,	x>=9))			V			(x	>=5		Λ		wp(x	=	x+1,	x	>=9))	
	 											=	(x	<	5	Λ	x*x	>=	9)			V			(x	>=	5	Λ		x+1	>=	9)		
	 											=	(x	<=	-3)		V		(x	>=	3	Λ	x	<	5)		V		(x	>=	8)	

For	practice,	find	the	weakest	precondition	of	this	statement:	

	 if	(x	!=	0)	
	 	 z	=	x;	
	 else	
	 	 z	=	x+1;	
	 {	z	>	0	}	

The	solution:	

	 wp(IF,	z	>	0)	=	(x	!=	0		Λ		wp(z	=	x,	z	>	0))			V			(x	==	0		Λ		wp(z	=	x+1,	z	>	0))	
								=	(x	!=	0		Λ		x	>	0)			V			(x	==	0		Λ		x+1	>	0)	

	 	 								=	(x	>	0)	V	(x	==	0)	
	 	 								=	(x	>=	0)	

	



	 CSE	331	Reasoning	About	Code	I	 8	

	

Forward	Reasoning	Revisited:	Renaming	Variables	and	Aiming	for	Stronger	Post-Conditions	

[This	section	added	by	Dan	Grossman	in	Fall	2014.		It’s	newer,	so	typos	are	more	likely.]	

To	demonstrate	a	couple	more	subtle	issues	with	forward	reasoning	when	variables	are	reassigned,	
consider	this	very	simple	precondition	and	two	assignment	statements:	

	 {x	>	0}	

	 y	=	x;		

	 x	=	3;	

Intuitively,	the	strongest	post-condition	is	{y	>	0	Λ	x	=	3},	but	if	we	are	not	careful,	misuse	or	sloppy	use	
of	the	rules	we	have	developed	could	produce	either	a	wrong	post-condition	(which	is	really	bad,	the	
whole	point	of	precise	code	reasoning	is	to	get	things	right)	or	a	weaker	post-condition	(which	might	be	
okay,	but	may	be	too	little	to	prove	what	we	want).	

Here	is	a	wrong	approach:	

	 {x	>	0}	

	 y	=	x;		

	 {x	>	0	Λ	y	=	x}	

	 x	=	3;	

	 {x	>	0	Λ	y	=	x	Λ	x	=	3}	which	simplifies	to	{y	=	x	Λ	x	=	3}	

This	is	clearly	wrong:	from	the	post-condition	written	above	we	can	conclude	that	y=3,	but	that	is	not	
true	unless	x=3	initially,	which	we	do	not	know.		All	we	assume	initially	is	x>0,	which	does	not	imply	x=3.	

What	went	wrong?		When	we	assign	to	a	variable,	we	cannot	carry	forward	from	the	precondition	facts	
that	refer	to	the	old	contents.		The	mistake	is	putting	y=x	in	the	post-condition	of	the	second	
assignment.		To	avoid	concluding	wrong	things,	it	suffices	to	take	out	any	facts	related	to	a	variable	
when	that	variable	is	assigned,	so	we	could	remove	the	x	>	0	and	the	y	=	x	to	get	this	correct-but-not-
ideal-so-keep-reading	approach:	

	 {x	>	0}	

	 y	=	x;		

	 {x	>	0	Λ	y	=	x}	

	 x	=	3;	

	 {x	=	3}	



	 CSE	331	Reasoning	About	Code	I	 9	

This	post-condition	is	correct,	but	we	lost	the	fact	that	y	>	0.		How	can	we	get	it	back?		One	ad	hoc	way	is	
to	weaken	the	middle	assertion	to	replace	y	=	x	with	y	>	0	and	confirm	that	all	the	assertions	are	still	
valid:	

													{x	>	0}	

	 y	=	x;		

	 {x	>	0	Λ	y	>	0}	where	we	notice	this	is	strictly	weaker	than	{x	>	0	Λ	y	=	x}	

	 x	=	3;	

	 {x	=	3	Λ	y	>	0}	

That	works	in	this	example,	but	(1)	it’s	not	clear	how	to	do	this	in	general	and	(2)	the	middle	assertion	is	
no	longer	as	strong	as	it	could	be	–	we	do	know	after	the	first	assignment	that	y=x.	

The	more	general	solution	is	not	to	remove	facts	about	the	old	contents,	but	to	change	them	to	use	a	
different	variable	that	“stands	for”	the	old-contents.		Here	we	do	so	with	x1	as	the	new	variable	for	the	
old	contents	of	x:	

{x	>	0}	

	 y	=	x;		

	 {x	>	0	Λ	y	=	x}	

	 x	=	3;	

	 {x1	>	0	Λ	y	=	x1	Λ	x	=	3}	which	simplifies	to	{y	>	0	Λ	x	=	3}	

The	overall	post-condition	{x1	>	0	Λ	y	=	x1	Λ	x	=	3}	is	as	strong	as	possible	and	then	we	can	just	simplify	it	
to	make	it	easier	for	humans	to	understand.		As	a	final	note,	if	we	had	a	slightly	different	post-condition	
like	{x1	>	0	Λ	y	=	x1	Λ	z	=	x1	Λ	x	=	3}	we	would	not	necessarily	want	to	change	that	to	{y	>	0	Λ	z	>0	Λ	x	=	
3}	because	that	is	a	weaker	assertion,	losing	the	fact	that	y=z.	

	

	

	

	


