
CSE 331
Software Design & Implementation

Hal Perkins
Spring 2016

Exceptions and Assertions
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

Outline
•  General concepts about dealing with errors and failures

•  Assertions: what, why, how
–  For things you believe will/should never happen

•  Exceptions: what, how in Java
–  How to throw, catch, and declare exceptions
–  Subtyping of exceptions
–  Checked vs. unchecked exceptions

•  Exceptions: why in general
–  For things you believe are bad and should rarely happen
–  And many other style issues

•  Alternative with trade-offs: Returning special values

•  Summary and review
CSE331 Spring 2016 2

Failure causes

Partial failure is inevitable
–  Goal: prevent complete failure
–  Structure your code to be reliable and understandable

Some failure causes:

1. Misuse of your code
–  Precondition violation

2. Errors in your code
–  Bugs, representation exposure, …

3. Unpredictable external problems
–  Out of memory, missing file, …

3 CSE331 Spring 2016

What to do when something goes wrong

Fail early, fail friendly

Goal 1: Give information about the problem
–  To the programmer – a good error message is key!
–  To the client code: via exception or return-value or …

Goal 2: Prevent harm
Abort: inform a human

•  Perform cleanup actions, log the error, etc.
Re-try:

•  Problem might be transient
Skip a subcomputation:

•  Permit rest of program to continue
Fix the problem?

•  Usually infeasible to repair from an unexpected state
4 CSE331 Spring 2016

Avoiding errors

A precondition prohibits misuse of your code
–  Adding a precondition weakens the spec

This ducks the problem of errors-will-happen
–  Mistakes in your own code
–  Misuse of your code by others

Removing a precondition requires specifying more behavior
–  Often a good thing, but there are tradeoffs
–  Strengthens the spec
–  Example: specify that an exception is thrown

5 CSE331 Spring 2016

Outline
•  General concepts about dealing with errors and failures

•  Assertions: what, why, how
–  For things you believe will/should never happen

•  Exceptions: what, how
–  How to throw, catch, and declare exceptions in Java
–  Subtyping of exceptions
–  Checked vs. unchecked exceptions

•  Exceptions: why in general
–  For things you believe are bad and should rarely happen
–  And many other style issues

•  Alternative with trade-offs: Returning special values

•  Summary and review
CSE331 Spring 2016 6

Defensive programming

Check:
–  Precondition
–  Postcondition
–  Representation invariant
–  Other properties that you know to be true

Check statically via reasoning and tools
Check dynamically via assertions

assert index >= 0;
assert items != null : "null item list argument"
assert size % 2 == 0 : "Bad size for " +
 toString();

–  Write assertions as you write code
–  Include descriptive messages

7 CSE331 Spring 2016

Enabling assertions

In Java, assertions can be enabled or disabled at runtime without
recompiling

Command line:

java –ea runs code with assertions enabled
java runs code with assertions disabled (default)

Eclipse:

Select Run>Run Configurations… then add -ea to VM
arguments under (x)=arguments tab

(These tool details were covered in section already)

8 CSE331 Spring 2016

When not to use assertions

Don’t clutter the code with useless, distracting repetition
x = y + 1;
assert x == y + 1;

Don’t perform side effects
 assert list.remove(x); // won’t happen if disabled

// Better:
boolean found = list.remove(x);
assert found;

Turn them off in rare circumstances (production code(?))

–  Most assertions better left enabled

9 CSE331 Spring 2016

assert and checkRep()

CSE 331’s checkRep() is another dynamic check

Strategy: use assert in checkRep() to test and fail with
meaningful traceback/message if trouble found

–  Be sure to enable asserts when you do this!

Asserts should be enabled always for CSE 331 projects

–  We will enable them for grading

10 CSE331 Spring 2016

Expensive checkRep()tests

Detailed checks can be too slow in production

But complex tests can be very helpful, particularly during testing/
debugging (let the computer find problems for you!)

No perfect answers; suggested strategy for checkRep:

–  Create a static, global “debug” or “debugLevel” variable
–  Run expensive tests when this is enabled
–  Turn it off in graded / production code if tests are too

expensive

Often helpful: put expensive / complex tests in separate methods
and call as needed

11 CSE331 Spring 2016

Square root

// requires: x ≥ 0
// returns: approximation to square root of x
public double sqrt(double x) {
 ...
}

12 CSE331 Spring 2016

Square root with assertion

// requires: x ≥ 0
// returns: approximation to square root of x
public double sqrt(double x) {
 assert (x >= 0.0);
 double result;
 … compute result …
 assert (Math.abs(result*result – x) < .0001);
 return result;
}

–  These two assertions serve very different purposes

(Note: the Java library Math.sqrt method returns NaN for x<0. We use different specifications in
this lecture as examples.)

13 CSE331 Spring 2016

Outline
•  General concepts about dealing with errors and failures

•  Assertions: what, why, how
–  For things you believe will/should never happen

•  Exceptions: what, how
–  How to throw, catch, and declare exceptions in Java
–  Subtyping of exceptions
–  Checked vs. unchecked exceptions

•  Exceptions: why in general
–  For things you believe are bad and should rarely happen
–  And many other style issues

•  Alternative with trade-offs: Returning special values

•  Summary and review
CSE331 Spring 2016 14

Square root, specified for all inputs

// throws: IllegalArgumentException if x < 0
// returns: approximation to square root of x
public double sqrt(double x)
 throws IllegalArgumentException
{
 if (x < 0)
 throw new IllegalArgumentException();
 …
}

•  throws is part of a method signature: “it might happen”
–  Comma-separated list

•  throw is a statement that actually causes exception-throw
–  Immediate control transfer [like return but different]

15 CSE331 Spring 2016

Using try-catch to handle exceptions

public double sqrt(double x)
 throws IllegalArgumentException
 …

Client code:
try {
 y = sqrt(…);
} catch (IllegalArgumentException e) {
 e.printStackTrace(); //and/or take other actions
}

Handled by nearest dynamically enclosing try/catch

–  Top-level default handler: stack trace, program terminates

16 CSE331 Spring 2016

Throwing and catching

•  Executing program has a stack of
currently executing methods
–  Dynamic: reflects runtime order of

method calls
–  No relation to static nesting of

classes, packages, etc.
•  When an exception is thrown, control

transfers to nearest method with a
matching catch block
–  If none found, top-level handler prints

stack trace and terminates
•  Exceptions allow non-local error handling

–  A method many levels up the stack
can handle a deep error

17 CSE331 Spring 2016

Catching with inheritance

try {
 code…
} catch (FileNotFoundException fnfe) {
 code to handle a file not found exception
} catch (IOException ioe) {
 code to handle any other I/O exception
} catch (Exception e) {
 code to handle any other exception
}

•  A SocketException would match the second block
•  An ArithmeticException would match the third block
•  Subsequent catch blocks need not be supertypes like this

18 CSE331 Spring 2016

Exception Hierarchy

19 CSE331 Spring 2016

Java’s checked/unchecked distinction

Checked exceptions (style: for special cases)
–  Callee: Must declare in signature (else type error)
–  Client: Must either catch or declare (else type error)

•  Even if you can prove it will never happen at run time,
the type system does not “believe you”

–  There is guaranteed to be a dynamically enclosing catch

Unchecked exceptions (style: for never-expected)
–  Library: No need to declare
–  Client: No need to catch
–  Subclasses of

 RuntimeException
 and Error

Throwable

Runtime
Exception

Error Exception

Checked
exceptions

20 CSE331 Spring 2016

Checked vs. unchecked

•  No perfect answer to “should possible exceptions thrown” be part of
a method signature
–  So Java provided both

•  Advantages to checked exceptions:
–  Static checking of callee ensures no other checked exceptions

get thrown
–  Static checking of caller ensures caller does not forget to check

•  Disadvantages:
–  Impedes implementations and overrides
–  Often in your way when prototyping
–  Have to catch or declare even in clients where the exception is

not possible

CSE331 Spring 2016 21

The finally block

finally block is always executed
–  Whether an exception is thrown or not

try {
 code…
} catch (Type name) {
 code… to handle the exception
} finally {
 code… to run after the try or catch finishes
}

22 CSE331 Spring 2016

What finally is for

finally is used for common “must-always-run” or “clean-up” code
–  Avoids duplicated code in catch branch[es] and after
–  Avoids having to catch all exceptions

try {
 // ... write to out; might throw exception
} catch (IOException e) {
 System.out.println("Caught IOException: "
 + e.getMessage());
} finally {
 out.close();
}

23 CSE331 Spring 2016

Outline
•  General concepts about dealing with errors and failures

•  Assertions: what, why, how
–  For things you believe will/should never happen

•  Exceptions: what, how in Java
–  How to throw, catch, and declare exceptions
–  Subtyping of exceptions
–  Checked vs. unchecked exceptions

•  Exceptions: why in general
–  For things you believe are bad and should rarely happen
–  And many other style issues

•  Alternative with trade-offs: Returning special values

•  Summary and review
CSE331 Spring 2016 24

Propagating an exception

// returns: x such that ax^2 + bx + c = 0
// throws: IllegalArgumentException if no real soln exists
double solveQuad(double a, double b, double c)
 throws IllegalArgumentException
{
 // No need to catch exception thrown by sqrt
 return (-b + sqrt(b*b - 4*a*c)) / (2*a);
}

Aside: How can clients know if a set of arguments

 to solveQuad is illegal?

25 CSE331 Spring 2016

Why catch exceptions locally?

Failure to catch exceptions usually violates modularity
–  Call chain: A → IntegerSet.insert → IntegerList.insert
–  IntegerList.insert throws some exception

•  Implementer of IntegerSet.insert knows how list is being used
•  Implementer of A may not even know that IntegerList exists

Method on the stack may think that it is handling an exception raised by
a different call

Better alternative: catch it and throw again

–  “chaining” or “translation”
–  Do this even if the exception is better handled up a level
–  Makes it clear to reader of code that it was not an omission

26 CSE331 Spring 2016

Exception translation
// returns: x such that ax^2 + bx + c = 0
// throws: NotRealException if no real solution exists
double solveQuad(double a, double b, double c)
 throws NotRealException {

 try {
 return (-b + sqrt(b*b - 4*a*c)) / (2*a);
 } catch (IllegalArgumentException e) {
 throw new NotRealException(); // “chaining”
 }
}

class NotRealException extends Exception {
 NotRealException() { super(); }
 NotRealException(String message) { super(message); }
 NotRealException(Throwable cause) { super(cause); }
 NotRealException(String msg, Throwable c) { super(msg, c); }
}
 27 CSE331 Spring 2016

Exceptions as non-local control flow

void compile() {
 try {
 parse();
 typecheck();
 optimize();
 generate():
 } catch (RuntimeException e) {
 Logger.log("Failed: " + e.getMessage());
 }
}

–  Not common – usually bad style, particularly at small scale
–  Java/C++, etc. exceptions are expensive if thrown/caught
–  Reserve exceptions for exceptional conditions

28 CSE331 Spring 2016

Two distinct uses of exceptions

•  Failures
–  Unexpected
–  Should be rare with well-written client and library
–  Can be the client’s fault or the library’s
–  Usually unrecoverable

•  Special results
–  Expected but not the common case
–  Unpredictable or unpreventable by client

29 CSE331 Spring 2016

Handling exceptions

•  Failures
–  Usually can’t recover
–  If condition not checked, exception propagates up the stack
–  The top-level handler prints the stack trace
–  Unchecked exceptions the better choice (else many

methods have to declare they could throw it)

•  Special results
–  Take special action and continue computing
–  Should always check for this condition
–  Should handle locally by code that knows how to continue
–  Checked exceptions the better choice (encourages local

handling)

30 CSE331 Spring 2016

Don’t ignore exceptions

Effective Java Tip #65: Don't ignore exceptions

Empty catch block is (common) poor style – often done to get code to
compile despite checked exceptions

–  Worse reason: to silently hide an error
try {
 readFile(filename);
} catch (IOException e) {} // silent failure

At a minimum, print out the exception so you know it happened
–  And exit if that’s appropriate for the application
} catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
}

31 CSE331 Spring 2016

Outline
•  General concepts about dealing with errors and failures

•  Assertions: what, why, how
–  For things you believe will/should never happen

•  Exceptions: what, how in Java
–  How to throw, catch, and declare exceptions
–  Subtyping of exceptions
–  Checked vs. unchecked exceptions

•  Exceptions: why in general
–  For things you believe are bad and should rarely happen
–  And many other style issues

•  Alternative with trade-offs: Returning special values

•  Summary and review
CSE331 Spring 2016 32

Informing the client of a problem
Special value:

–  null for Map.get
–  -1 for indexOf
–  NaN for sqrt of negative number

Advantages:
–  For a normal-ish, common case, it “is” the result
–  Less verbose clients than try/catch machinery

Disadvantages:
–  Error-prone: Callers forget to check, forget spec, etc.
–  Need “extra” result: Doesn’t work if every result could be real

•  Example: if a map could store null keys
–  Has to be propagated manually one call at a time

General Java style advice: Exceptions for exceptional conditions
–  Up for debate if indexOf not-present-value is exceptional

 33 CSE331 Spring 2016

Special values in C/C++/others

•  For errors and exceptional conditions in Java, use exceptions!

•  But C doesn’t have exceptions and some C++ projects avoid them

•  Over decades, a common idiom has emerged
–  Error-prone but you can get used to it L
–  Affects how you read code
–  Put “results” in “out-parameters”
–  Result is a boolean (int in C) to indicate success or failure

type result;
if(!computeSomething(&result)) { … return 1; }
// no "exception", use result

•  Bad, but less bad than error-code-in-global-variable
CSE331 Spring 2016 34

Outline
•  General concepts about dealing with errors and failures

•  Assertions: what, why, how
–  For things you believe will/should never happen

•  Exceptions: what, how in Java
–  How to throw, catch, and declare exceptions
–  Subtyping of exceptions
–  Checked vs. unchecked exceptions

•  Exceptions: why in general
–  For things you believe are bad and should rarely happen
–  And many other style issues

•  Alternative with trade-offs: Returning special values

•  Summary and review
CSE331 Spring 2016 35

Exceptions: review

Use an exception when
–  Used in a broad or unpredictable context
–  Checking the condition is feasible

Use a precondition when
–  Checking would be prohibitive

•  E.g., requiring that a list be sorted
–  Used in a narrow context in which calls can be checked

Use a special value when
–  It is a reasonable common-ish situation
–  Clients are likely (?) to remember to check for it

Use an assertion for internal consistency checks that should not fail

36 CSE331 Spring 2016

Exceptions: review, continued

Use checked exceptions most of the time
–  Static checking is helpful

But maybe avoid checked exceptions if possible for many callers to

guarantee exception cannot occur

Handle exceptions sooner rather than later

Not all exceptions are errors

–  Example: File not found

Good reference: Effective Java, Chapter 9
–  A whole chapter? Exception-handling design matters!

37 CSE331 Spring 2016

