CSE 331
Software Design & Implementation

Hal Perkins
Fall 2016
Events, Listeners, and Callbacks




The limits of scaling

What prevents us from building huge,
intricate structures that work perfectly and
indefinitely?

— No friction

— No gravity

— No wear-and-tear

... it's the difficulty of understanding them

So we split designs into sensible parts and
reduce interaction among the parts

— More cohesion within parts
— Less coupling across parts

CSE331 Fall 2016 2



Design exercise #1

Write a typing-break reminder program

Offer the hard-working user occasional reminders of the perils of
Repetitive Strain Injury, and encourage the user to take a break
from typing.

Naive design:
— Make a method to display messages and offer exercises

— Make a loop to call that method from time to time

(Let's ignore multithreaded solutions for this discussion)

CSE331 Fall 2016 3



TimeToStretch suggests exercises

public class TimeToStretch {
public void run() ({
System.out.println("Stop typing!");
suggestExercise () ;

}

public void suggestExercise () ({

CSE331 Fall 2016 4



Timer calls run () periodically

public class Timer ({
private TimeToStretch tts = new TimeToStretch() ;
public void start() ({
while (true) {

if (enoughTimeHasPassed) {

tts.run () ;

CSE331 Fall 2016



Main class puts it together

class Main {
public static void main(String[] args) {
Timer t = new Timer () ;

t.start () ;

This program, as designed, will work...
But we can do better

CSE331 Fall 2016



Module dependency diagram (MDD)

An arrow in a module dependency diagram (MDD) indicates
“depends on” or “knows about”

— Simplistically: “any name mentioned in the source code”

Main depends on Timer

Main /

TimeToStretch </\i Timer depends

on TimeToStretch

What's wrong with this diagram?
— Does Timer really need to depend on TimeToStretch?
— Is Timer re-usable in a new context?

CSE331 Fall 2016 7



Decoupling

Timer needs to call the run method
— Timer does not need to know what the run method does

Weaken the dependency of Timer on TimeToStretch

— Introduce a weaker specification, in the form of an interface or
abstract class

public abstract class TimerTask ({

public abstract void run();

}

Timer only needs to know that something (e.g., TimeToStretch)
meets the TimerTask specification

CSE331 Fall 2016 8



TimeToStretch (version 2)

public class TimeToStretch extends TimerTask {
public void run() ({
System.out.println("Stop typing!");

suggestExercise() ;

public void suggestExercise() ({

CSE331 Fall 2016



Timer (version 2)

public class Timer ({
private TimerTask task;
public Timer (TimerTask task) {
this.task = task;

}
public void start() {

while (true) {

ééék.run();
}
}

}

Main creates a TimeToStretch object and passes it to Timer:
Timer t = new Timer (new TimeToStretch()) ;

t.start () ;

CSE331 Fall 2016

10



Module dependency diagram (version 2)

« Timer depends on TimerTask, not TimeToStretch
— Unaffected by implementation details of TimeToStretch

— Now Timer is much easier to reuse

— Main depends on the constructor for TimeToStretch
« Main still depends on Timer (is this necessary?)

TimerTask

<€

Main \

[

TimeToStretch

CSE331 Fall 2016

Timer

—> Dependence

T Subclassing
11



The callback design pattern

An alternative: use a callback to invert the dependency

TimeToStretch creates a Timer, and passes in a reference to itself
so the Timer can call it back

— This is a callback — a method call from a module to a client that
it notifies about some condition

The callback inverts a dependency

— Inverted dependency. TimeToStretch depends on Timer
(not vice versa)

» Less obvious coding style, but more “natural” dependency
— Side benefit: Main does not depend on Timer

CSE331 Fall 2016 12



Callbacks

Callback: “Code” provided by client to be used by library
* |In Java, pass an object with the “code” in a method

Synchronous callbacks:
« Examples: HashMap calls its client's hashCode, equals
« Useful when library needs the callback result immediately

Asynchronous callbacks:
« Examples: GUI listeners
* Register to indicate interest and where to call back

« Useful when the callback should be performed later, when
some interesting event occurs

CSE331 Fall 2016 13



TimeToStretch (version 3)

public class TimeToStretch extends

private Timer timer;
public TimeToStretch () {
timer = new Timer (this) ;

Register interest
with the timer

}
public void start() {

timer.start () ;
} / Callback entry point
public void run() ({

System.out.println("Stop typing!");
suggestExercise () ;

CSE331 Fall 2016 14



Main (version 3)

TimeToStretch tts = new TimeToStretch() ;

tts.start () ;

— Uses a callback in TimeToStretch to invert a dependency

— This MDD shows the inversion of the dependency between
Timer and TimeToStretch (compare to version 1)

. Main does not depend on Timer
Main TimeToStretch depends on Timer

TimerTask

< Timer

TimeToStretch

/

CSE331 Fall 2016 15



Decoupling and design

« A good design has dependences (coupling) only where it makes
sense

« While you design (before you code), examine dependences
« Don't introduce unnecessary coupling

« Coupling is an easy temptation if you code first
— Suppose a method needs information from another object:
— If you hack in a way to get it:
* The hack might be easy to write
* It will damage the code’s modularity and reusability
* More complex code is harder to understand

CSE331 Fall 2016 16



Design exercise #2

A program to display information about stocks
— Stock tickers
— Spreadsheets
— Graphs

Naive design:
— Make a class to represent stock information

— That class updates all views of that information (tickers,
graphs, etc.) when it changes

CSE331 Fall 2016

17



Module dependency diagram

« Main class gathers information and stores in Stocks
« Stocks class updates viewers when necessary

Main

Stocks >StockTicker
Spreadsheet
StockGraph

Problem: To add/change a viewer, must change Stocks
Better: insulate Stocks from the vagaries of the viewers

CSE331 Fall 2016

18



Weaken the coupling

What should Stocks class know about viewers?

— Only needs an update method to call with changed data
— Old way:

void updateViewers () {
ticker.update (newPrice) ;
spreadsheet.update (newPrice) ;
graph.update (newPrice) ;
// Edit this method to
// add a new viewer. ®

CSE331 Fall 2016

19



Weaken the coupling

What should Stocks class know about viewers?

— Only needs an update method to call with changed data

— New way: The “observer pattern”

interface PriceObserver {
void update (PricelInfo pi);

}

class Stocks {

private List<PriceObserver> observers;
void addObserver (PriceObserver pi) ({

observers.add(pi) ;

}

void notifyObserver (PricelInfo i)
for (PriceObserver obs : observers)

Register a
callback

}

Do the callbacks

paAv)




The observer pattern

« Stocks not responsible for viewer creation
« Main passes viewers to Stocks as observers
» Stocks keeps list of PriceObservers, notifies them of changes

Create viewers and gef observers

Main

Create Stocks and l PriceObserver
add observers % t
Stocks wpt?

Create (or be)
observers

StockTicker

Spreadsheet

StockGraph

<€

* |ssue: update method must pass enough information to

(unknown) viewers

CSE331 Fall 2016

21



A different design: pull versus push

« The Observer pattern (last slide) implements push functionality

« Alternative: a pull model: give viewers access to Stocks, let
them extract the data they need

new(Stocks)

Main
l Stocks.new

Stocks

StockTicker [<

Spreadsheet [<-

StockGraph <
“Push” versus “pull” efficiency can depend on frequency of operations

(Also possible to use both patterns simultaneously.)
CSE331 Fall 2016 22




Another example of Observer pattern

// Represents a sign-up sheet of students
public class SignupSheet extends Observable ({

private List<String> students
= new ArrayList<String>() ;| Part of the

public void addStudent (String student) { JDK
students.add (student) ;

setChanged () ;
notifyObservers() ;

}

public int size() {
return students.size();

} SignupSheet inherits many methods including:
h void addObserver (Obserwver o)

} protected void setChanged()

void notifyObservers ()

CSE331 Fall 2016 23



An Observer

Part of the JDK

public class SignupObserver implements Observer {

// called whenever observed object cha Notrelevantto us

// and observers are notified
public void update (Observable o, Object arg) {
System.out.println("Signup count: "

+ ((SignupSheet)o) .size()) ;]
} P\

} cast because
Observable is
not generic ®

CSE331 Fall 2016 24



Registering an observer

SignupSheet s = new SignupSheet() ;

s .addStudent ("billg") ;

// nothing visible happens

s .addObserver (new SignupObserver()) ;
s .addStudent ("torvalds") ;

// now text appears: '"Signup count: 2"

Java's “Listeners” (particularly in GUI classes) are examples of the
Observer pattern

(Feel free to use the Java observer classes in your designs — if
they are a good fit — but you don’t have to use them)

CSE331 Fall 2016 25



User interfaces: appearance vs. content

It is easy to tangle up appearance and content

— Particularly when supporting direct manipulation (e.g., dragging
line endpoints in a drawing program)

— Another example: program state stored in widgets in dialog
boxes

Neither can be understood easily or changed easily
This destroys modularity and reusability
— Over time, it leads to bizarre hacks and huge complexity

— Code must be discarded

Callbacks, listeners, and other patterns can help

CSE331 Fall 2016 26



