CSE 331 Midterm Exam Sample Solution 2/18/15

Question 1. (10 points) (Forward reasoning) Using forward reasoning, write an assertion
in each blank space indicating what is known about the program state at that point, given
the precondition and the previously executed statements. Be as specific as possible, but
be sure to retain all relevant information.

(a) { x>0 & vy > x}

{x>0¢&y =17 }

{x>0¢&y =17 }

b { Ixl =42}

{ Ix] =21 } => { x=-21 | x =21 }

Page 1 of 10

CSE 331 Midterm Exam Sample Solution 2/18/15

Question 2. (12 points) (assertions) Using backwards reasoning, find the weakest
precondition for each sequence of statements and postcondition below. Insert appropriate
assertions in each blank line. You should simplify your final answers if possible.

(a) (5 points)

{yt3 + 1 > 2*y } => { yt+4d > 2*y } => { 4 > y }

X = y+3;

{ x+1 > 2*y }

w=x + 1;

{w > 2%y}
(b) (7 points)
{ x > 90 }

if (x > 0) {

{ x+ 10 > 100 } => { x > 90 }

x =x + 10;

{ x > 100 }

} else {

{ x =20 > 100 } => { x > 120 }
x - 20;

X

{ x > 100 }
}

{ x > 100 }

Note that the else branch would only be executed if x <= 0, but in that case it would
be impossible to satisfy the precondition needed to ensure x > 100 after execution of
the assignment x=x-20.

Page 2 of 10

CSE 331 Midterm Exam Sample Solution 2/18/15

Question 3. (16 points) Loops. Given a positive integer x, the following method
supposedly returns the integer value such that 2" < x <2". Prove that the code works
as specified. You need to figure out an appropriate loop invariant and then annotate the
code with the invariant and other assertions needed to prove that it works.

// return positive integer n such that 2*(n-1) <x <=2"n

// pre: x> 1
static int pwr2 (int x) {
int n = 0;
int p = 1;

{inv: p=2"n & x>2%(n-1) }
while (x > p) {

{inv& x>2"n}

n=mn+1;

{p=2~(n-1) & x>2"(n-1) }
p=p* 2;

{inv:ip=2"n & x>2"(n-1) }

{inv& x<=p}={p=2"n& x>2"n-1) & x<=2"n}

=> {27(n-1) <x <=2"n}

return n;

}

Page 3 of 10

CSE 331 Midterm Exam Sample Solution 2/18/15

Question 4. (8 points) Here is the header for a method that computes a student’s overall
score and adds that information to a gradebook data structure.

void addScore(String name, List<Double> scores, Map<String,Double> gradeBook);

(a) (3 points) Here are two possible specifications for this method:

X (@requires name != null and scores !=null and gradeBook != null
(@modifies gradeBook
(@eftects add a mapping <name, overallScore> to gradeBook

Y @requires name != null and scores != null
(@modifies gradeBook

(@eftects add a mapping <name, overallScore> to gradeBook
@throws Illegal ArgumentException if gradeBook is null

Which specification is stronger than the other? (circle) X @ neither

(b) (3 points) Here is one possible implementation of this method:

if (name == null || scores == null || gradeBook == null)
throw new Illegal ArgumentException();

double grade = 0.0;

for (double s : scores) grade +=s;

if (scores.size() > 0) grade /= scores.size();

gradeBook.put(name,grade);

Which specification(s) does this implementation satisfy? (circle)

X Y neither

(c) (2 points) This method was designed by one of the summer interns. Is this a well-
designed method or not? (i.e., think about guidelines for how to decide what methods
should do, etc.) Briefly justify your answer — if it’s great, say why, if it needs to be
redesigned or replaced by something else, what should change and why?

It is not a particularly good design because the method is doing two things:

calculating an average score and storing that information in a particular data
structure. It would be better to split off the calculation into a separate method.

Page 4 of 10

CSE 331 Midterm Exam Sample Solution 2/18/15

The next few questions concern the following class, which was written by someone who
never had the advantage of learning how to specify things properly as in CSE 331. You
can remove this page for reference while answering the following questions.

/** A FiniteStringList contains an ordered list of strings but has a finite capacity. */
public class FiniteStringList {

private String[] strings; // strings in this list

private int numStrings; // number of strings in this list

// constructor

public FiniteStringList(int capacity) {
assert capacity >= 0;
strings = new String[capacity];
numStrings = 0;

}

// return number of strings currently stored in this list
public int size() { return numStrings; }

// add new string to the end of the list if room and return true if successful
public boolean add(String newString) {

assert newString != null : "cannot add null to FiniteStringList";

if (numStrings == strings.length)

return false;

strings[numStrings] = newString;

numStrings+-+;

return true;

}

// return string in location k from the list
public String get(int k) {
if (k <0 || k >= numStrings)
throw new IndexOutOfBoundsException();
return strings[k];

}

// replace string at location k with newString and return old value that was replaced
public String set(int k, String newString) {
assert newString != null : "cannot add null to FiniteStringList";
if (k <0 || k >= numStrings)
throw new IndexOutOfBoundsException();
String oldval = strings[k];
strings[k] = newString;
return oldval;
b
b

Page 5 of 10

CSE 331 Midterm Exam Sample Solution 2/18/15

Question 5. (10 points) This class lacks a proper abstract specification of the class (i.e.,
the specification comment that appears above the start of the class definition itself), and it
does not give a representation invariant (RI) or abstraction function (AF). In the space
below write a proper abstract specification, representation invariant, and abstraction
function for this class. (Don’t be alarmed if these are fairly simple. You may need to
look at the code on the previous page to figure out the most appropriate specifications.)

/** (abstract class description here...)
%

*

* A FiniteStringList stores an ordered sequence of Strings s0, s1, ..., sn where s0
* is the first string added to the list (or a value stored to replace that first string),
* and sn is the last string added to the list (or a value stored to replace it).

* The list has a fixed, finite capacity that is specified when it is created.
%

*

*/
public class FiniteStringList {
// rep
String[] strings; // strings in this list
int numStrings; // number of strings in this list

// Representation invariant (RI):

/l

// numStrings >= 0 & numStrings <= strings.length &
/I strings[0..numStrings-1] does not contain null

/l

/l

// Abstraction Function (AF):

/l

// The Strings s0, s1, ..., sn are stored in strings[0], strings[1], ...,
// strings[numStrings-1] in that order

/l

Page 6 of 10

CSE 331 Midterm Exam Sample Solution 2/18/15

Question 6. (12 points) Specifications. None of the methods in this class have a proper
CSE 331-style specification. Complete the JavaDoc comments for the set method below
to provide the most suitable specification, based on what is written in the code. Leave
any unneeded fields empty. There is space at the beginning (before (@param) to write the
summary description of the method that should begin every JavaDoc specification. You
may have to use your best judgment based on the implementation to decide how to
specify some details.

/**

* Replace the kth element of this with a new string and return the old value
* stored at that location
%k

* @param k location in this to be updated/replaced
%k

* (@param newString new value to store in location k
%k

* (@requires newString != null
%k

* (@modifies this

*

* (@effects newString stored in position k of this
sk

* @throws IndexOutOfBoundsException if k < 0 or k >= this.size() *

*

* (@returns String previously stored at location k of this
%k

*/
public String set(int k, String newString) {
assert newString != null : "cannot add null to FiniteStringList";
if (k <0 || k >= numStrings)
throw new IndexOutOfBoundsException();
String oldval = strings[k];
strings[k] = newString;
return oldval;

}

*Answers that include 0 <= k <size() as a precondition (@requires) instead of in the
@throws clause received full credit. From examining the code it appears that this is
being handled differently than the test for newString != null, which is clearly a
precondition, but it is reasonable to throw a specific exception for a precondition
violation.

Specifications that mentioned the numStrings variable lost a small amount of credit

unless numStrings was used in the abstract specification of the class as a name for
the number of strings currently stored in the FiniteStringList

Page 7 of 10

CSE 331 Midterm Exam Sample Solution 2/18/15

Question 7. (12 points) Testing. Here is the specification for a function that tests for
divisibility by 3.

/** Test for divisibility by 3
* (@param n number to check
* @requires n >=0
* (@return true if n is divisible by 3
*/
public static boolean divisibleBy3(intn) { ... }

(a) (9 points) Describe three separate black-box (specification) tests for this method. For
full credit each one should test separate subdomains of the input. For each test give the
input value of n and the expected result. You do not need to write junit or other Java
code and you don’t need to explain why you picked the tests you did.
(1) input: n =0, output: true
(i1) input: n = 1, output: false
(ii1) input: n = 3, output: true
There are, of course, many other possibilities. Answers received full credit if they
were reasonable and not obviously testing the same subdomains repeatedly.
(b) (3 points) Here is an implementation of this method that contains a silly bug:

public static boolean divisibleBy3(int n) {

if (n == 331) return true;

return (n % 3 == 0);

}

What are the revealing subdomains (i.e., input domains) that would reveal the existence
of this particular bug in the code?

{331} and { all integers other than 331 }

Page 8 of 10

CSE 331 Midterm Exam Sample Solution 2/18/15

Question 8. (14 points) Equality and things. Suppose we have a class representing
movies, storing their title, year released, and length:

public class Movie {
String title; // movie title
int year; // year released
int minutes; //length of the movie

}...

(a) (8 points) Write a proper equals method for this class. Two Movie objects are
considered to be equal if they have the same title and same year released.

@Override
public boolean equals(Object o) {
if (! (o instanceof Movie)) {
return false;

}
Movie m = (Movie) o;
return this.title.equals(m.title) & & this.year == m.year;

}
Now, here are four possible implementations of hashCode for this class.
. public int hashCode() { return 331; }
. public int hashCode() { return title.hashCode(); }

1
2
3. public int hashCode() { return title.hashCode() + minutes; }
4. public int hashCode() { return title.hashCode() + year; }

(b) (4 points) Which of these four implementations are a correct implementation of
hashCode, i.e, they obey the contract for hashCode. List the numbers of the correct ones.

1,2,4

(c) (2 points) Which of the four implementations of hashCode is likely to be the best one?
Give a one- or two-sentence reason for your answer.

#4 is likely best since it includes all of the data involved in the equality test in the

hashCode computation, which means that movies that are not considered equal are
more likely to have distinct hashCodes.

Page 9 of 10

CSE 331 Midterm Exam Sample Solution 2/18/15

Question 9. (6 points) Suppose we have a class that stores a list of some sort.

public class Things {
List<String> things;

}...

We want to add a method to this class to allow clients to retrieve the current contents of
the list. Here is an implementation that is clearly a bad idea because of representation
exposure problems:
public List<String> getThings() { return things; }

Here are two implementations that try to avoid the representation exposure problem:

1. public List<String> getThings() { return new ArrayList<String>(things); }

2. public List<String> getThings() { return Collections.unmodifiableList(things); }
(a) (3 points) Give one reason why we might prefer version #1 compared to #2:
Returns a new copy of the data that will not change over time. Solution #2 returns a
read-only view of the list, but the client code might see different values in that list if
it reads the list repeatedly while it is being changed by the Things implementation.
We might also prefer this if the client wants a mutable copy of the data, although

that is a secondary reason compared to getting a fixed snapshot of all of the data at
one moment in time.

(b) (3 points) Give one reason why we might prefer version #2 compared to #1.

Faster/cheaper. It returns a view of the original data without creating a copy of it.

Page 10 of 10

