
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2015

Java Graphics and GUIs
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins)

The plan

Today: introduction to Java graphics and Swing/AWT libraries

Then: event-driven programming and user interaction

None of this is comprehensive – only an overview and guide to
what you should expect to be out there

–  Some standard terminology and perspective

Credits: material taken from many places; including slides and
materials by Ernst, Hotan, Mercer, Notkin, Perkins, Stepp; Reges;
Sun/Oracle docs & tutorial; Horstmann; Wikipedia; others, folklore,
…

2 CSE331 Winter 2015

References

Very useful start: Sun/Oracle Java tutorials
–  http://docs.oracle.com/javase/tutorial/uiswing/index.html

Mike Hoton’s slides/sample code from CSE 331 Sp12 (lectures 23,
24 with more extensive widget examples)

–  http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect23-GUI.pdf
–  http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect24-Graphics.pdf
–  http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect23-GUI-code.zip
–  http://courses.cs.washington.edu/courses/cse331/12sp/lectures/lect24-Graphics-

code.zip

Good book that covers this (and much more): Core Java vol. I by
Horstmann & Cornell

–  There are other decent Java books out there too

3 CSE331 Winter 2015

Why study GUIs?

•  Er, because graphical user interfaces are pretty common (duh J)
–  And it’s fun!

•  Classic example of using inheritance to organize large class

libraries
–  The best (?) example of OOP’s strengths

•  Work with a huge API – and learn how (not) to deal with all of it

•  Many core design patterns show up: callbacks, listeners, event-

driven programs, decorators, façade

4 CSE331 Winter 2015

What not to do…

•  Don’t try to learn the whole library: There’s way too much

•  Don’t memorize – look things up as you need them

•  Don’t miss the main ideas, fundamental concepts

•  Don’t get bogged down implementing eye candy

5 CSE331 Winter 2015

Main topics to learn

Organization of the AWT/Swing library
–  Names of essential widgets/components

Graphics and drawing

–  Repaint callbacks, layout managers, etc.

Handling user events

Building GUI applications

–  MVC, user events, updates, …

6 CSE331 Winter 2015

A very short history (1)

Java’s standard libraries have supported GUIs from the beginning

Original Java GUI: AWT (Abstract Window Toolkit)

–  Limited set of user interface elements (widgets)
–  Mapped Java UI to host system UI widgets
–  Lowest common denominator
–  “Write once, debug everywhere”

7 CSE331 Winter 2015

A very short history (2)

Swing: Newer GUI library, introduced with Java 2 (1998)

Basic idea: underlying system provides only a blank window

–  Swing draws all UI components directly
–  Doesn’t use underlying system widgets

Not a total replacement for AWT: Swing is implemented on top of
core AWT classes and both still coexist

Use Swing, but deal with AWT when you must

8 CSE331 Winter 2015

GUI terminology
window: A first-class citizen of the graphical desktop

–  Also called a top-level container
–  Examples: frame, dialog box, applet

component: A GUI widget that resides in a window
–  Called controls in many other languages
–  Examples: button, text box, label

container: A component that hosts (holds) components
–  Examples: frame, applet, panel, box

9 CSE331 Winter 2015

Some components…

CSE331 Winter 2015 10

Component and container classes

•  Every GUI-related class
descends from Component,
which contains dozens of basic
methods and fields
–  Examples: getBounds,
isVisible,
setForeground, …

•  “Atomic” components: labels,
text fields, buttons, check
boxes, icons, menu items…

•  Many components are
containers – things like panels
(JPanel) that can hold nested
subcomponents
 11

Component

Container

JComponent

JPanel JFileChooser Tons of
JComponents

Various
AWT

containers

Lots of AWT
components

CSE331 Winter 2015

Swing/AWT inheritance hierarchy

Component (AWT)	
Window

Frame
JFrame (Swing)	
JDialog

Container
JComponent (Swing)	

JButton JColorChooser JFileChooser
JComboBox JLabel JList
JMenuBar JOptionPane JPanel
JPopupMenu JProgressBar JScrollbar
JScrollPane JSlider JSpinner
JSplitPane JTabbedPane JTable
JToolbar JTree JTextArea
JTextField ...

12 CSE331 Winter 2015

Component properties
Zillions. Each has a get (or is) accessor and a set modifier.
Examples: getColor,setFont,isVisible, …

name	 type	 descrip.on	
background	 Color background	 color	 behind	 component	

border	 Border border	 line	 around	 component	
enabled	 boolean whether	 it	 can	 be	 interacted	 with	
focusable	 boolean whether	 key	 text	 can	 be	 typed	 on	 it	

font	 Font font	 used	 for	 text	 in	 component	
foreground	 Color foreground	 color	 of	 component	
height,	 width	 int component's	 current	 size	 in	 pixels	

visible	 boolean whether	 component	 can	 be	 seen	
toolBp	 text	 String text	 shown	 when	 hovering	 mouse	

size,	 minimum	 /	
maximum	 /	 preferred	 size	

Dimension various	 sizes,	 size	 limits,	 or	 desired	
sizes	 that	 the	 component	 may	 take	

CSE331 Winter 2015 13

Types of containers

•  Top-level containers: JFrame, JDialog, …
–  Often correspond to OS windows
–  Usually a “host” for other components
–  Live at top of UI hierarchy, not nested in anything else

•  Mid-level containers: panels, scroll panes, tool bars
–  Sometimes contain other containers, sometimes not
–  JPanel is a general-purpose component for drawing or

hosting other UI elements (buttons, etc.)

•  Specialized containers: menus, list boxes, …

•  Technically, all JComponents are containers

14 CSE331 Winter 2015

JFrame – top-level window

•  Graphical window on the screen

•  Typically holds (hosts) other components

•  Common methods:
–  JFrame(String title): constructor, title optional
–  setDefaultCloseOperation(int what)

•  What to do on window close
• JFrame.EXIT_ON_CLOSE terminates application

–  setSize(int width, int height): set size
–  add(Component c): add component to window
–  setVisible(boolean b): make window visible or not

15 CSE331 Winter 2015

Example

SimpleFrameMain.java

16 CSE331 Winter 2015

JPanel – a general-purpose container

•  Commonly used as a place for graphics, or to hold a collection
of button, labels, etc.

•  Needs to be added to a window or other container:
frame.add(new JPanel(…))

•  JPanels can be nested to any depth

•  Many methods/fields in common with JFrame (since both inherit

from Component)
–  Advice: can’t find a method/field? Check the superclasses

A particularly useful method:

–  setPreferredSize(Dimension d)

17 CSE331 Winter 2015

Containers and layout

•  What if we add several components to a container?
–  How are they positioned relative to each other?

•  Answer: each container has a layout manger	

CSE331 Winter 2015 18

Layout managers

Kinds:
–  FlowLayout (left to right [changeable], top to bottom)

•  Default for JPanel
•  Each row centered horizontally [changeable]

–  BorderLayout (“center”, “north”, “south”, “east”, “west”)
•  Default for JFrame
•  No more than one component in each of 5 regions
•  (Of course, component can itself be a container)

–  GridLayout (regular 2-D grid)

–  Others... (some are incredibly complex)

FlowLayout and BorderLayout should be good enough for now…

19 CSE331 Winter 2015

pack()

Once all the components are added to their containers, do this to
make the window visible:

pack();
setVisible(true);

pack() figures out the sizes of all components and calls the
container’s layout manager to set locations in the container

–  (recursively as needed)

If your window doesn’t look right, you may have forgotten pack()

20 CSE331 Winter 2015

Example

SimpleLayoutMain.java

21 CSE331 Winter 2015

Graphics and drawing

So far so good – and very boring…

What if we want to actually draw something?

–  A map, an image, a path, …?

Answer: Override method paintComponent

–  Components like JLabel provide a suitable paintComponent
that (in JLabel’s case) draws the label text

–  Other components like JPanel typically inherit an empty
paintComponent and can override it to draw things

Note: As we’ll see, we override paintComponent but we don’t call it

22 CSE331 Winter 2015

Example

SimplePaintMain.java

23 CSE331 Winter 2015

Graphics methods

Many methods to draw various lines, shapes, etc., …

Can also draw images (pictures, etc.):

–  In the program (not in paintComponent):
•  Use AWT’s “Toolkit” to load an image:
Image pic =
 Toolkit.getDefaultToolkit()
 .getImage(file-name (with path));

–  Then in paintComponent:
g.drawImage(pic, …);

24 CSE331 Winter 2015

Graphics vs Graphics2D

Class Graphics was part of the original Java AWT
Has a procedural interface:

 g.drawRect(…), g.fillOval(…), …

Swing introduced Graphics2D
–  Added an object interface – create instances of Shape like
Line2D, Rectangle2D, etc., and add these to the
Graphics2D object

Actual parameter to paintComponent is always a Graphics2D
–  Can always cast this parameter from Graphics to
Graphics2D

–  Graphics2D supports both sets of graphics methods
–  Use whichever you like for CSE 331

25 CSE331 Winter 2015

So who calls paintComponent?
And when??
•  Answer: the window manager calls paintComponent

whenever it wants!!! (a callback!)
–  When the window is first made visible, and whenever after

that some or all of it needs to be repainted
•  Corollary: paintComponent must always be ready to repaint

regardless of what else is going on
–  You have no control over when or how often
–  You must store enough information to repaint on demand

•  If “you” want to redraw a window, call repaint() from the
program (not from paintComponent)
–  Tells the window manager to schedule repainting
–  Window manager will call paintComponent when it

decides to redraw (soon, but maybe not right away)
–  Window manager may combine several quick repaint()

requests and call paintComponent() only once
26 CSE331 Winter 2015

Example

FaceMain.java

27 CSE331 Winter 2015

How repainting happens

28

program window manager (UI)
repaint()

paintComponent(g)

It’s worse than it looks!

Your program and the
window manager are
running concurrently:

•  Program thread

•  User Interface thread

Do not attempt to mess
around – follow the rules
and nobody gets hurt! Asynchronous

Callback

CSE331 Winter 2015

Crucial rules for painting
•  Always override paintComponent(g) if you want to draw on a

component
•  Always call super.paintComponent(g) first
•  NEVER, EVER, EVER call paintComponent yourself
•  Always paint the entire picture, from scratch
•  Use paintComponent’s Graphics parameter to do all the

drawing. ONLY use it for that. Don’t copy it, try to replace it, or
mess with it. It is quick to anger.

•  DON’T create new Graphics or Graphics2D objects

Fine print: Once you are a certified™ wizard, you may find reasons
to do things differently, but that requires deeper understanding of
the GUI library’s structure and specification

29 CSE331 Winter 2015

What’s next – and not

Major topic for next lecture is how to handle user interactions
–  We already know the core idea: it’s a big-time use of the

observer pattern

Beyond that you’re on your own to explore all the wonderful
widgets in Swing/AWT.

–  Have fun!!
–  (But don’t sink huge amounts of time into eye candy)

30 CSE331 Winter 2015

