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Lecture 1 – Introduction & Overview 
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins) 
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Welcome! 
We have 10 weeks to move well beyond novice programmer: 
 

•  Larger programs 
–  Small programs are easy: “code it up” 
–  Complexity changes everything: “design an artifact” 
–  Analogy: using hammers and saws vs. making cabinets (but 

not yet building houses) 

•  Principled, systematic software: What does “it’s right” mean? 
How do we know “it’s right”?  What are best practices for 
“getting it right”? 

•  Effective use of languages and tools: Java, IDEs, debuggers, 
JUnit, JavaDoc, Subversion, … 
–  Principles are ultimately more important than details 

•  You will forever learn details of new tools/versions 
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Concise to-do list 

Before next class: 
 
1.  If you’re still trying to add, sign sheet before leaving 

2.  Familiarize yourself with the course website 
http://courses.cs.washington.edu/courses/cse331/15wi/ 

2.  Read syllabus and academic-integrity policy 

3.  Fill in office hours doodle 
 

4.  Post something on the discussion board (“welcome” followup) 

5.  Do Homework 0 (see calendar), due 10 AM Wednesday! 
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Who: Course staff 

•  Lecturer: 
–  Hal Perkins: Faculty since sometime in the last millennium,  

6th(!) time teaching CSE331 
•  TAs: 

–  Uldarico Muico 
–  Qingwen Pi 
–  Vinod Rathnam 
–  Whitney Schmidt 
–  Ben Tebbs 

•  Office hours will be figured out ASAP 

Get to know us! 
–  Make sure this feels like a 40-person class with 80 100 students 
–  We’re here to help you succeed 
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Acknowledgments 

•  Course designed/created/evolved/edited by others 
–  Michael D. Ernst 
–  Dan Grossman 
–  David Notkin 
–  A couple dozen amazing TAs 

•  Hoping my own perspective offers benefits 

•  [Because you are unlikely to care, I won’t carefully attribute 
authorship of course materials] 
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Staying in touch 
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•  Course email list: cse331a_wi15@u.washington.edu 
–  Students and staff already subscribed 
–  You must get announcements sent there 
–  Fairly low traffic 

•  Message Board 
–  For appropriate discussions; staff will monitor 
–  Help each other out and stay in touch outside class 

•  Course staff: cse331-staff@cs.washington.edu 
•  Best way to contact staff if discussion board not appropriate 

•  Anonymous feedback link on webpage 
–  For good and bad: If you don’t tell me, I don’t know 



Lecture and section 

•  Both required 

•  All materials posted, but they are visual aids 
–  Arrive punctually and pay attention (& take notes!) 
–  If doing so doesn’t save you time, one of us is messing up (!) 

•  Section will often be more tools and homework-details focused 
–  Especially first few weeks: preparing for projects 
–  Section AA and AB rooms changed to MGH; AC still in MGH 

(but different room) 

•  Other posted handouts related to class material 
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Homeworks 

•  Biggest misconception about CSE331 (?) 
“Homework was programming projects that seemed 

disconnected from lecture” 
–  If you think so, you are making them harder! 

•  Reconsider 
•  Seek out the connections by thinking-before-typing 
•  Approaching them as CSE143 homework won’t work well 
•  Don’t keep cutting with a dull blade 

•  First couple assignments are “more on paper”, followed by 
software development that is increasingly substantial 

•  Four late days for the quarter: save for emergencies 
–  Two max on any one project 
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Resources – Books 

Required: 
•  Pragmatic Programmer, Hunt & Thomas 
•  Effective Java 2nd ed, Bloch 
Serious programmers 
should study these 
 
 
 
Decent “Java book” is a wise thing to have 
•  Core Java Vol I, Horstmann 

And use the Java API Docs 
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Readings (and quizzes) 

•  These are “real” books about software, approachable in 331  
–  Occasionally slight reach: accept the challenge 

•  Overlap only partial with lectures 

•  Want to make sure you “do it”  
–  Reading and thinking about software design is essential 

•  Books seem expensive given your budget, but very 
cheap as a time-constrained professional 

–  Will have some simple online reading quizzes 
•  In a few batches; no late days 

–  Material is fair-game for exams 
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Books? In 2015? 
•  Why not just use Google, Stack Overflow, Reddit, Quora, …? 
•  Web-search good for: 

–  Quick reference (What is the name of the function that does 
…?  What are its parameters?) 

–  Links to a good reference 
•  (can be) Bad for 

–  How do I configure …? 
–  Why does it work this way? 
–  What is the intended use? 
–  How does my issue fit into the bigger picture? 

•  Beware: 
–  Random code blobs cut-and-paste into your code (why does 

it work?  what does it do?) 
–  This inscrutable incantation solved my problem on an 

unstated version for no known reason 
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Exams 

•  Midterm: (tentative) Friday, Feb. 13, in class 

•  Final: Monday March 16, 8:30-10:20 AM (sorry!) 

•  All the concepts, different format than homework 
–  Will post old exams from various instructors later 
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Academic Integrity 

•  Read the course policy carefully 
–  Clearly explains how you can and cannot get/provide help on 

homework and projects 

•  Always explain any unconventional action 
 
•  I have promoted and enforced academic integrity since I first 

started teaching (as a TA a very long time ago) 
–  Great trust with little sympathy for violations 
–  Honest work is the most important feature of a university (or 

engineering or business).  Anything less disrespects your 
colleagues (including me) and yourself. 
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Questions? 

 
Anything I forgot about course mechanics before we discuss, you 

know, software? 
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Goals 

•  CSE 331 will teach you to how to write correct programs 

•  What does it mean for a program to be correct? 
–  Specifications 

•  What are ways to achieve correctness? 
–  Principled design and development 
–  Abstraction and modularity 
–  Documentation 

•  What are ways to verify correctness? 
–  Testing 
–  Reasoning and verification 
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Main topic:  Managing complexity 

•  Abstraction and specification 
–  Procedural, data, and control flow abstractions 
–  Why they are useful and how to use them 

•  Writing, understanding, and reasoning about code 
–  Will use Java, but the issues apply in all languages 
–  Some focus on object-oriented programming 

•  Program design and documentation 
–  What makes a design good or bad (example: modularity) 
–  Design processes and tools 

•  Pragmatic considerations 
–  Testing 
–  Debugging and defensive programming 
–  [more in CSE403: Managing software projects] 
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The goal of system building 

•  To create a correctly functioning artifact 

•  All other matters are secondary 
–  Many of them are essential to producing a correct system 

•  We insist that you learn to create correct systems 
–  This is hard (but fun and rewarding!) 

Related skill: communication 
–  Can you convince yourself and others something is correct 

via precise, coherent explanations? 
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Why is building good software hard? 

•  Large software systems are enormously complex 
–  Millions of “moving parts” 

•  People expect software to be malleable 
–  After all, it’s “only software” 

•  We are always trying to do new things with software 
–  Relevant experience often missing 

•  Software engineering is about: 
–  Managing complexity  
–  Managing change 
–  Coping with potential defects  

•  Customers, developers, environment, software 
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Programming is hard 

•  It is surprisingly difficult to specify, design, implement, test, 
debug, and maintain even a simple program 

•  CSE331 will challenge you  

•  If you are having trouble, think before you act 
–  Then, look for help 

•  We strive to create assignments that are reasonable if you apply 
the techniques taught in class… 
… but likely hard to do in a brute-force manner 

 … and almost certainly impossible to finish if you 
      put them off until a few days before they’re due 

19 CSE 331 Winter 2015 



Prerequisites 

•  Knowing Java is a prerequisite 
–  We assume you have mastered CSE142 and CSE143 

Examples: 
•  Sharing: 

–  Distinction between == and equals() 
–  Aliasing: multiple references to the same object 

•  Object-oriented dispatch: 
–  Inheritance and overriding 
–  Objects/values have a run-time type 

•  Subtyping 
–  Expressions have a compile-time type 
–  Subtyping via extends (classes) and implements (interfaces) 
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You have homework! 

•  Homework 0, due online by 10 AM Wednesday 
–  Write (don’t run!) an algorithm to rearrange (swap) the 

elements in an array 
–  And argue (prove) in concise, convincing English that your 

solution is correct! 

•  Purpose: 
–  Great practice 
–  Surprisingly difficult 
–  So we can build up to reasoning about large designs, not 

just 5-10 line programs 
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CSE331 is hard! 

•  You will learn a lot! 
•  Be prepared to work and to think 
•  The staff will help you learn 

–  And will be working hard, too 

•  So let’s get going… 
–  Before we create masterpieces we need to hone our ability 

to reason very precisely about code… 
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Example 

“Complete this method such that it returns the index of 
the max of the first n elements of the array arr.” 
 
  int index_of_max(int[] arr, int n) { 
     ... 
  } 
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Example 

“Complete this method such that it returns the index of 
the max of the first n elements of the array arr.” 
 
  int index_of_max(int[] arr, int n) { 
     … 
  } 
 
What questions do you have about the specification? 
 
Given a (better) specification, is there 1 implementation? 
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Moral 
•  You can all write the code 

•  More interesting in CSE331: 
–  What if n is 0? 
–  What if n is less than 0? 
–  What if n is greater than array length 
–  What if there are “ties”? 
–  Ways to indicate errors: exceptions, return value, 
… 

–  Weaker  versus stronger specifications? 
–  Hard to write English specifications (n vs. n-1) 
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Reminder: Concise to-do list 

Before next class: 
 
1.  If you’re still trying to add, sign sheet before leaving 

2.  Familiarize yourself with the course website 
http://courses.cs.washington.edu/courses/cse331/15wi/ 

2.  Read syllabus and academic-integrity policy 

3.  Fill in office hours doodle 
 

4.  Post something on the discussion board (“welcome” followup) 

5.  Do Homework 0 (see calendar), due 10 AM Wednesday! 
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