
CSE 331 
Software Design & Implementation 

Hal Perkins 
Winter 2015 

Lecture 1 – Introduction & Overview 
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins) 

1 CSE 331 Winter 2015 



Welcome! 
We have 10 weeks to move well beyond novice programmer: 
 

•  Larger programs 
–  Small programs are easy: “code it up” 
–  Complexity changes everything: “design an artifact” 
–  Analogy: using hammers and saws vs. making cabinets (but 

not yet building houses) 

•  Principled, systematic software: What does “it’s right” mean? 
How do we know “it’s right”?  What are best practices for 
“getting it right”? 

•  Effective use of languages and tools: Java, IDEs, debuggers, 
JUnit, JavaDoc, Subversion, … 
–  Principles are ultimately more important than details 

•  You will forever learn details of new tools/versions 
CSE 331 Winter 2015 2 



Concise to-do list 

Before next class: 
 
1.  If you’re still trying to add, sign sheet before leaving 

2.  Familiarize yourself with the course website 
http://courses.cs.washington.edu/courses/cse331/15wi/ 

2.  Read syllabus and academic-integrity policy 

3.  Fill in office hours doodle 
 

4.  Post something on the discussion board (“welcome” followup) 

5.  Do Homework 0 (see calendar), due 10 AM Wednesday! 

CSE 331 Winter 2015 3 



Who: Course staff 

•  Lecturer: 
–  Hal Perkins: Faculty since sometime in the last millennium,  

6th(!) time teaching CSE331 
•  TAs: 

–  Uldarico Muico 
–  Qingwen Pi 
–  Vinod Rathnam 
–  Whitney Schmidt 
–  Ben Tebbs 

•  Office hours will be figured out ASAP 

Get to know us! 
–  Make sure this feels like a 40-person class with 80 100 students 
–  We’re here to help you succeed 

 4 CSE 331 Winter 2015 



Acknowledgments 

•  Course designed/created/evolved/edited by others 
–  Michael D. Ernst 
–  Dan Grossman 
–  David Notkin 
–  A couple dozen amazing TAs 

•  Hoping my own perspective offers benefits 

•  [Because you are unlikely to care, I won’t carefully attribute 
authorship of course materials] 

CSE 331 Winter 2015 5 



Staying in touch 

CSE 331 Winter 2015 6 

•  Course email list: cse331a_wi15@u.washington.edu 
–  Students and staff already subscribed 
–  You must get announcements sent there 
–  Fairly low traffic 

•  Message Board 
–  For appropriate discussions; staff will monitor 
–  Help each other out and stay in touch outside class 

•  Course staff: cse331-staff@cs.washington.edu 
•  Best way to contact staff if discussion board not appropriate 

•  Anonymous feedback link on webpage 
–  For good and bad: If you don’t tell me, I don’t know 



Lecture and section 

•  Both required 

•  All materials posted, but they are visual aids 
–  Arrive punctually and pay attention (& take notes!) 
–  If doing so doesn’t save you time, one of us is messing up (!) 

•  Section will often be more tools and homework-details focused 
–  Especially first few weeks: preparing for projects 
–  Section AA and AB rooms changed to MGH; AC still in MGH 

(but different room) 

•  Other posted handouts related to class material 

CSE 331 Winter 2015 7 



Homeworks 

•  Biggest misconception about CSE331 (?) 
“Homework was programming projects that seemed 

disconnected from lecture” 
–  If you think so, you are making them harder! 

•  Reconsider 
•  Seek out the connections by thinking-before-typing 
•  Approaching them as CSE143 homework won’t work well 
•  Don’t keep cutting with a dull blade 

•  First couple assignments are “more on paper”, followed by 
software development that is increasingly substantial 

•  Four late days for the quarter: save for emergencies 
–  Two max on any one project 

CSE 331 Winter 2015 8 



Resources – Books 

Required: 
•  Pragmatic Programmer, Hunt & Thomas 
•  Effective Java 2nd ed, Bloch 
Serious programmers 
should study these 
 
 
 
Decent “Java book” is a wise thing to have 
•  Core Java Vol I, Horstmann 

And use the Java API Docs 

9 CSE 331 Winter 2015 



Readings (and quizzes) 

•  These are “real” books about software, approachable in 331  
–  Occasionally slight reach: accept the challenge 

•  Overlap only partial with lectures 

•  Want to make sure you “do it”  
–  Reading and thinking about software design is essential 

•  Books seem expensive given your budget, but very 
cheap as a time-constrained professional 

–  Will have some simple online reading quizzes 
•  In a few batches; no late days 

–  Material is fair-game for exams 

CSE 331 Winter 2015 10 



Books? In 2015? 
•  Why not just use Google, Stack Overflow, Reddit, Quora, …? 
•  Web-search good for: 

–  Quick reference (What is the name of the function that does 
…?  What are its parameters?) 

–  Links to a good reference 
•  (can be) Bad for 

–  How do I configure …? 
–  Why does it work this way? 
–  What is the intended use? 
–  How does my issue fit into the bigger picture? 

•  Beware: 
–  Random code blobs cut-and-paste into your code (why does 

it work?  what does it do?) 
–  This inscrutable incantation solved my problem on an 

unstated version for no known reason 
CSE 331 Winter 2015 11 



Exams 

•  Midterm: (tentative) Friday, Feb. 13, in class 

•  Final: Monday March 16, 8:30-10:20 AM (sorry!) 

•  All the concepts, different format than homework 
–  Will post old exams from various instructors later 

CSE 331 Winter 2015 12 



Academic Integrity 

•  Read the course policy carefully 
–  Clearly explains how you can and cannot get/provide help on 

homework and projects 

•  Always explain any unconventional action 
 
•  I have promoted and enforced academic integrity since I first 

started teaching (as a TA a very long time ago) 
–  Great trust with little sympathy for violations 
–  Honest work is the most important feature of a university (or 

engineering or business).  Anything less disrespects your 
colleagues (including me) and yourself. 

CSE 331 Winter 2015 13 



Questions? 

 
Anything I forgot about course mechanics before we discuss, you 

know, software? 

CSE 331 Winter 2015 14 



Goals 

•  CSE 331 will teach you to how to write correct programs 

•  What does it mean for a program to be correct? 
–  Specifications 

•  What are ways to achieve correctness? 
–  Principled design and development 
–  Abstraction and modularity 
–  Documentation 

•  What are ways to verify correctness? 
–  Testing 
–  Reasoning and verification 

CSE 331 Winter 2015 15 



Main topic:  Managing complexity 

•  Abstraction and specification 
–  Procedural, data, and control flow abstractions 
–  Why they are useful and how to use them 

•  Writing, understanding, and reasoning about code 
–  Will use Java, but the issues apply in all languages 
–  Some focus on object-oriented programming 

•  Program design and documentation 
–  What makes a design good or bad (example: modularity) 
–  Design processes and tools 

•  Pragmatic considerations 
–  Testing 
–  Debugging and defensive programming 
–  [more in CSE403: Managing software projects] 

16 CSE 331 Winter 2015 



The goal of system building 

•  To create a correctly functioning artifact 

•  All other matters are secondary 
–  Many of them are essential to producing a correct system 

•  We insist that you learn to create correct systems 
–  This is hard (but fun and rewarding!) 

Related skill: communication 
–  Can you convince yourself and others something is correct 

via precise, coherent explanations? 

17 CSE 331 Winter 2015 



Why is building good software hard? 

•  Large software systems are enormously complex 
–  Millions of “moving parts” 

•  People expect software to be malleable 
–  After all, it’s “only software” 

•  We are always trying to do new things with software 
–  Relevant experience often missing 

•  Software engineering is about: 
–  Managing complexity  
–  Managing change 
–  Coping with potential defects  

•  Customers, developers, environment, software 

18 CSE 331 Winter 2015 



Programming is hard 

•  It is surprisingly difficult to specify, design, implement, test, 
debug, and maintain even a simple program 

•  CSE331 will challenge you  

•  If you are having trouble, think before you act 
–  Then, look for help 

•  We strive to create assignments that are reasonable if you apply 
the techniques taught in class… 
… but likely hard to do in a brute-force manner 

 … and almost certainly impossible to finish if you 
      put them off until a few days before they’re due 

19 CSE 331 Winter 2015 



Prerequisites 

•  Knowing Java is a prerequisite 
–  We assume you have mastered CSE142 and CSE143 

Examples: 
•  Sharing: 

–  Distinction between == and equals() 
–  Aliasing: multiple references to the same object 

•  Object-oriented dispatch: 
–  Inheritance and overriding 
–  Objects/values have a run-time type 

•  Subtyping 
–  Expressions have a compile-time type 
–  Subtyping via extends (classes) and implements (interfaces) 

20 CSE 331 Winter 2015 



You have homework! 

•  Homework 0, due online by 10 AM Wednesday 
–  Write (don’t run!) an algorithm to rearrange (swap) the 

elements in an array 
–  And argue (prove) in concise, convincing English that your 

solution is correct! 

•  Purpose: 
–  Great practice 
–  Surprisingly difficult 
–  So we can build up to reasoning about large designs, not 

just 5-10 line programs 

CSE 331 Winter 2015 21 



CSE331 is hard! 

•  You will learn a lot! 
•  Be prepared to work and to think 
•  The staff will help you learn 

–  And will be working hard, too 

•  So let’s get going… 
–  Before we create masterpieces we need to hone our ability 

to reason very precisely about code… 

22 CSE 331 Winter 2015 



Example 

“Complete this method such that it returns the index of 
the max of the first n elements of the array arr.” 
 
  int index_of_max(int[] arr, int n) { 
     ... 
  } 
 
 

CSE 331 Winter 2015 23 



Example 

“Complete this method such that it returns the index of 
the max of the first n elements of the array arr.” 
 
  int index_of_max(int[] arr, int n) { 
     … 
  } 
 
What questions do you have about the specification? 
 
Given a (better) specification, is there 1 implementation? 
 

CSE 331 Winter 2015 24 



Moral 
•  You can all write the code 

•  More interesting in CSE331: 
–  What if n is 0? 
–  What if n is less than 0? 
–  What if n is greater than array length 
–  What if there are “ties”? 
–  Ways to indicate errors: exceptions, return value, 
… 

–  Weaker  versus stronger specifications? 
–  Hard to write English specifications (n vs. n-1) 

CSE 331 Winter 2015 25 



Reminder: Concise to-do list 

Before next class: 
 
1.  If you’re still trying to add, sign sheet before leaving 

2.  Familiarize yourself with the course website 
http://courses.cs.washington.edu/courses/cse331/15wi/ 

2.  Read syllabus and academic-integrity policy 

3.  Fill in office hours doodle 
 

4.  Post something on the discussion board (“welcome” followup) 

5.  Do Homework 0 (see calendar), due 10 AM Wednesday! 

CSE 331 Winter 2015 26 


