A~
b-v—w‘—* TS 0r e, Whion U AR
nurmecmnx EIROUECNIFDE - DANGEROUST LETS SEE . GARKE VNS 15 SITERED
nowere
) MEDIAL ») DDDORNSKE "2 b yoonstsrenr TLL MAKE

) GRRTER SNAXE ?
2) DANING ©) FALLRIM AR COPRERIERD. A SPREADSHEET T ORGANIZE IT:
‘(0D TOBFENSVE ‘me 4

TMHERETOPEK. BY LDp, THE INLAND
‘(OUUP YOURE TAIPAN HAS THE DEADLEST
DRESSED? vsumormysvﬂ&E

THE RESEARCH (OMPARING

T REALY NEED OSTP
USING DEPTH-FIRST SEARCHES.

5/13/15

Section 7:
Dijkstra’s

Slides adapted from Alex Mariakakis

with material Kellen Donohue, David
Mailhot, and Dan Grossman

THINGS TO DISCUSS

Late days
3 assignments left
Can use 2 late days max per assignment

Let us know how many you are using by filling out
the online late day request

Must do this by 48 hours after the initial deadline of the
homework assignment!

HOMEWORK 7

Modify your graph to use generics

Will have to update HW #5 and HW #6 tests
Implement Dijkstra’s algorithm

Search algorithm that accounts for edge weights

Note: This should not change your implementation
of Graph. Dijkstra’s is performed on a Graph, not
within a Graph.

HOMEWORK 7

The more well-connected two characters are,
the lower the weight and the more likely that a
path is taken through them
The weight of an edge is equal to the inverse of how
many comic books the two characters share
Ex: If Amazing Amoeba and Zany Zebra appeared in
5 comic books together, the weight of their edge
would be 1/5

REVIEW: SHORTEST PATHS WITH BFS

From Node B
A <B,A> 1
B 0
C <B,A,C> 2
D <B,D> 1
E <B,D,E> 2

5/13/15

SHORTEST PATHS WITH WEIGHTS

From Node B

<B,A>

<BA,C>
<B,A,C,D>
<B,ACE>

m oo w >
~N N o o N

Paths are not the same!

BFS VS. DIJKSTRA'S

100 ,~ 100 1
100 00 3
-10
500

BFS doesn’t work because path with minimal
cost # path with fewest edges

Dijkstra’s works if the weights are non-negative
What happens if there is a negative edge?
Minimize cost by repeating the cycle forever

DIUKSTRA'S ALGORITHM

Named after its inventor Edsger Dijkstra
(1930-2002)
Truly one of the “founders” of computer science;
this is just one of his many contributions
The idea: reminiscent of BFS, but adapted to
handle weights

Grow the set of nodes whose shortest distance has
been computed

Nodes not in the set will have a “best distance so far”
A priority queue will turn out to be useful for efficiency

DIUKSTRA'S ALGORITHM

For each node v, set v.cost = = and

v.known = false

Set source.cost = 0

While there are unknown nodes in the graph
Select the unknown node v with lowest cost
Mark v as known
For each edge (v, u) with weight w,

g E K lddse 14 / cost of best path through v to u

c2f=fulcost
if(cl < c2) // if the new path through v is better, update|

// cost of best path to u previously known

u.cost
u.path

]
)

EXAMPLE #1
® ® [

vertex | known? cost path

7 i} A Y 0

Order Added to Known Set:

EXAMPLE #1

known? cost path
Y 0
2 A
A
<4 A

Order Added to Known Set:

A

EXAMPLE #1

5/13/15

EXAMPLE #1

known? cost path
Y 0
B <2 A
C Y 1 A
Order Added to Known Set: E S: £
AC F e
G £
H o
EXAMPLE #1
known? cost path
Y 0
B) 2 A
C Y 1 A
D <4 A
Order Added to Known Set:
E <12 C
ACB F &)
G £
H o
EXAMPLE #1
known? cost path
Y 0
B) 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E <12 C
A, CB,D F <4 B
G
H

known? cost path
Y 0
B <2 A
C Y 1 A
Order Added to Known Set: D £ Ly
E 12 C
AC F &
G £
H %
EXAMPLE #1
known? cost path
Y 0
B Y 2 A
C Y 1 A
D <4 A
Order Added to Known Set:
E <12 C
ACB F <4 B
G P
H P
EXAMPLE #1
known? cost path
Y 0
B Y 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E <12 C
A, CB,D,F F Y 4 B
G
H

8

EXAMPLE #1

5/13/15

EXAMPLE #1

known? cost path
Y 0
B) 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E <12 C
A, CB,D,F F Y 4 B
G £
H =V 5
EXAMPLE #1
known? cost path
Y 0
B) 2 A
C Y 1 A
Order Added to Known Set: D | 4 s
E <12 C
A CB,D,FH F Y 4 B
G <8 H
H Vi 7 5
EXAMPLE #1
known? cost path
Y 0
B) 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E <1 G
A CB,D,FHG F Y 4 B
G Y 8 H
H Vi 7 5

known? cost path
Y 0
B Y 2 A
C Y 1 A
Order Added to Known Set: > M 4 A
E <12 C
A, C,B,D,FH F Y 4 B
G £
H Y 7 2
EXAMPLE #1
known? cost path
Y 0
B Y 2 A
C Y 1 A
Order Added to Known Set: 2 M 4 A
E <12 C
A C,B,D,FH,G F Y 4 B
G Y 8 H
H Y 7 2
EXAMPLE #1
known? cost path
Y 0
B Y 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E Y 11 G
A CB,D,FHG,E F Y 4 B
G Y 8 H
H Y 7 2

INTERPRETING THE RESULTS

5/13/15

EXAMPLE #2
G

vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 1" G
F N 4 B
G Y 8 H
H Y 7 F
vertex | known? cost path
A Y 0
B Y 3 E
C Y 2 A
Order Added to Known Set: 2 v ! 2
E f 2 D
A D,CEB,FG F Y 4 C
G Y 6 D

[)
T vertex | known? cost path

A Y 0

B ©

C ©

D ©
Order Added to Known Set: E 1

F S

G ©
PSEUDOCODE ATTEMPT #1

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while (not all nodes are known) {
b = dequeue
b.known = true
for each edge (b,a) in G {
if (!a.known) {
if(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight((b,a))
a.path = b
}

CAN WE DO BETTER?

Increase efficiency by considering lowest cost
unknown vertex with sorting instead of looking
at all vertices

PriorityQueue is like a queue, but returns
elements by lowest value instead of FIFO

PRIORITY QUEUE

Increase efficiency by considering lowest cost unknown vertex
with sorting instead of looking at all vertices

PriorityQueue is like a queue, but returns elements by lowest
value instead of FIFO
Two ways to implement:
Comparable
class Node implements Comparable<Node>
public int compareTo(other)
Comparator
class NodeComparator extends Comparator<Node>
new PriorityQueue(new NodeComparator())

PSEUDOCODE ATTEMPT #2

dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while (heap is not empty) {

b = deleteMin ()

if (b.known) continue;

b.known = true

for each edge (b,a) in G {

if ('a.known) {

add(b.cost + weight((b,a)))
}

5/13/15

HW7 IMPORTANT NOTES!!!

DO NOT access data from hw6/src/data
Copy over data files from hw6/src/data into hw7/
src/data, and access data in hw7 from there
instead
Remember to do this! Or tests will fail when
grading.

DO NOT modify ScriptFileTests.java

HW7 TEST SCRIPT COMMAND NOTES

HW?7 LoadGraph command is slightly different from
HW6

After graph is loaded, there should be at most one directed
edge from one node to another, with the edge label being
the multiplicative inverse of the number of books shared

Example: If 8 books are shared between two nodes, the
edge label will be 1/8

Since the edge relationship is symmetric, there would be
another edge going the other direction with the same edge
label

HW7 TEST SCRIPT COMMAND NOTES

Let’s say AddEdge is called by the client after LoadGraph

Now, two things may happen

There is a directed edge from one node to another, but not in the
other direction (no longer symmetric)

Need not worry about this. It will be up to the client to run
another AddEdge command if they want the symmetry

There are two directed edges from one node to the other

Make sure you choose the edge with the least cost in your
pathfinding algorithm

Do not overwrite an existing edge or combine edge values in any
way

GENERICS LECTURE (CON.)

Slides 39 to 40

https://courses.cs.washington.edu/courses/
cse331/15sp/lec13-generics.pdf#page=39

