The 5 Stages of Debuggin

some point in each of our lives, we must face errors in our code.
Debugging is a natural healing process to help us through these times.
Itis Important to recognize these common stages and realize that
debugging will eventually come to an end.

This stage is often characterized by such phrases as

“What? That's impossible,” or *I know this is right.” A

strong sign of denial Is recompiling without changing
any code, “just in case.

Bargaining/Self-Blame

Several programming errors are uncovered and the
programmer feels stupid and guilty for having made
them. Bargaining is common: “If | ix this, will you
please compile?” Also, “I only have 14 errors to gol™

Anger

Cryptic error messages send the programmer into a
rage. This stage is accompanied by an hours-lon
and profanity-filed diatribe about the limitations of
the language directed at whomever willlisten.

Following the outburst, the programmer becomes
aware that hours have gone by unproductively and
there is still no solution in sight. The programmer
becomes listless. Posture often deteriorates.

‘The programmer finally accepts the situation, declares
4 .

the bug a “feature", and goes to play some Quake.

Section 4:
HWS5, Graphs, and Testing

Slides by Vinod Rathnam

with material from Alex Mariakakis, Krysta
Yousoufian, Mike Ernst, Kellen Donohue

AGENDA

HW5

Graphs

JUnit Testing

Test Script Language (Demo)
JavaDoc (Demo)

DEMO: HW 5 STARTER FILES

GRAPHS

GRAPHS GRAPHS
Edges Children of A

GRAPHS GRAPHS

Parents of D Path from

AtoC

GRAPHS GRAPHS

Shortest path Shortest path

from A to C? from A to B?

INTERNAL VS. EXTERNAL TESTING

Internal : JUnit
How you decide to implement the object
Checked with implementation tests
External: test script
Your APl and specifications
Testing against the specification
Checked with specification tests

A JUNIT TEST CLASS

A method with @Test is flagged as a JUnit test

All @Test methods run when JUnit runs
import org.junit.*;
import static org.junit.Assert.*;

public class TestSuite {

@Test
public void TestNamel () {

}

USING JUNIT ASSERTIONS

Verifies that a value matches expectations
assertEquals (42, meaningOfLife());
assertTrue (list.isEmpty());

If the value isn’t what it should be, the test fails
Test immediately terminates
Other tests in the test class are still run as normal
Results show details of failed tests

USING JUNIT ASSERTIONS

assertTrue (test) the boolean test is false

assertFalse (test) the boolean test is true

assertEquals (expected, actual) the values are not equal
assertSame (expected, actual) the values are not the same (by ==)
assertNotSame (expected, actual) the values are the same (by ==)

assertNull (value) the given value is not null

assertNotNull (value) the given value is null

And others: http:/www.junit.org/apidocs/org/junit/Assert.html

Each method can also be passed a string to display if it fails:
assertEquals ("message", expected, actual)

CHECKING FOR EXCEPTIONS

Verify that a method throws an exception when it
should

Test passes if specified exception is thrown, fails
otherwise
Only time it’s OK to write a test without a form of
alsiSerit S

@Test (expected=IndexOutOfBoundsException.class)

public void testGetEmptyList() {

List<String> list = new ArrayList<String>();
list.get(0);

SETUP AND TEARDOWN
Methods to run before/after each test case method is called:
@Before
poblic /fvoid/ namel () [{I [14t41E
QAfter
public void name() { ... }

Methods to run once before/after the entire test class runs:

@BeforeClass

public static void name() { ... }
@AfterClass

public static void name() { ... }

http://www.junit.org/apidocs/org/junit/Assert.html

SETUP AND TEARDOWN

public class Example {
List empty;

@Before

public void initialize() {
empty = new ArrayList();

}

@Test

public void size() {

}

@Test

public void remove () {

}

DON’T REPEAT YOURSELF

Can declare fields for frequently-used values or constants
private static final String DEFAULT NAME =
“MickeyMouse”;

private static final User DEFAULT_USER = new User
(“lazowska”, “Ed”, “Lazowska”):;

Can write helper methods, etc.
private void eg(RatNum ratNum, String rep) {
assertEquals (rep, ratNum.toString());
}
private BinaryTree getTree (int[] items) {
// construct BinaryTree and add each element in items
}

#1: BE DESCRIPTIVE

When a test fails, JUnit tells you:
Name of test method
Message passed into failed assertion
Expected and actual values of failed assertion
The more descriptive this information is, the easier it is to diagnose failures

Good testAddDaysWithinMonth ()

Not so good testAddDaysl (), testAddDays2 ()

Bad testl (), test2()

Overkill TestAddDaysOneDayAndThenFiveDaysStartingOn

JanuaryTwentySeventhAndMakeSureItRollsBack
ToJanuaryAfterRollingToFebruary ()

#1: BE DESCRIPTIVE

Take advantage of message, expected, and
actual values

No need to repeat expected/actual values or info in test name
Use the right assert for the occasion:

assertEquals (expected, actual) instead
of assertTrue (expected.equals
(actual))

LET’S PUT IT ALL TOGETHER!

public class DateTest {

// Test addDays when it causes a rollover between months
QTest
public void testAddDaysWrapToNextMonth () {
Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;
Date expected = new Date (2050, 3, 1);

assertEquals ("date after +14 days", expected,
actual) ;

}

LET’S PUT IT ALL TOGETHER!

public class DateTest ({

Tells JUnit that this method is a test to run

// Test addDays when it causes a rollover between months

public void testAddDaysWrapToNextMonth () {
Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;
Date expected = new Date (2050, 3, 1);

assertEquals ("date after +14 days", expected,
actual) ;

}

LET’S PUT IT ALL TOGETHER!

public class DateTest {

Descriptive method name

// Test addDays when it causes a rollover between months
@Test
public void

estAddDaysWrapToNextMonth ()

Date actual

actual.addDays (14) ;

Date expected = new Date (2050, 3, 1);

assertEquals ("date after +14 days", expected,
actual) ;

}

LET’S PUT IT ALL TOGETHER!

public class DateTest {

Use assertion to check expected results

// Test addDays when it causes a rollover between months
@Test
public void testAddDaysWrapToNextMonth () {
Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;
Date expected = new Date (2050, 3, 1);
date after +14 days", expected,
actual)7

}

LET’S PUT IT ALL TOGETHER!

public class DateTest ({

Message gives details about the test in case
of failure

// Test addDays when it causes a rollover between months
@Test
public void testAddDaysWrapToNextMonth () {
Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;
Date expected = new Date (2050, 3, 1);

assertEquals ¢"date after +14 days",>gxpected,

actual) ;
}

#2: KEEP TESTS SMALL

Ideally, test one thing at a time

“Thing” usually means one method under one input
condition

Not always possible - but if you test x () using y (), try to
test y () inisolation in another test
Low-granularity tests help you isolate bugs
Tell you exactly what failed and what didn’t
Only a few (likely one) assert statements per test
Test halts after first failed assertion
Don’t know whether later assertions would have failed

#3: BE THOROUGH

Consider each equivalence class
Items in a collection: none, one, many
Consider common input categories
Math.abs () : negative, zero, positive values
Consider boundary cases
Inputs on the boundary between equivalence classes
Person.isMinor ():age<18,age==18,age>18
Consider edge cases
-1,0, 1, empty list, arr.length, arr.length-1
Consider error cases
Empty list, null object

How To Create JUnit Test Classes

Right-click hw5.test -> New -> JUnit Test Case

Important: Put class name in ImplementationTests.java

Demo

JUNIT ASSERTS VS. JAVA ASSERTS

We’ve just been discussing JUnit assertions
so far

Java itself has assertions

public class LitterBox {
ArrayList<Kitten> kittens;

public Kitten getKitten (int n) {
assert(n >= 0);
return kittens(n);

}

ASSERTIONS VS. EXCEPTIONS

public class LitterBox {

public class LitterBox
ArrayList<Kitten> kittens;

ArrayList<Kitten> kittens;

public Kitten getKitten(int n) { public Kitten getKitten(int n) {
assert(n >=0); try {
return kittens(n); return kittens(n);
} } catch(Exception e) {
}

}
}

}

Assertions should check for things that should
never happen

Exceptions should check for things that might
happen

“Exceptions address the robustness of your code,
while assertions address its correctness”

REMINDER: ENABLING ASSERTS IN ECLIPSE

To enable asserts:

Go to Run -> Run Configurations... -> Arguments tab ->
input -ea in VM arguments section

Do this for every test file

Demo!

Expensive CheckReps

Ant Validate and Staff Grading will have assertions enabled
But sometimes a checkRep can be expensive

For example, looking at each node in a Graph with a large
number of nodes

This could cause the grading scripts to timeout

Expensive CheckReps

So, before your final commit, a nice thing to do is to remove the
checking of expensive parts of your checkRep or the checking of
your checkRep entirely

For example, one thing you can do is have a boolean flag and
structure your checkRep as so:

private void checkRep() {
cheap-stuff
if(DEBUG_FLAG) { // or can have this for entire checkRep
expensive-stuff

}
cheap-stuff

EXTERNAL TESTS:
TEST SCRIPT LANGUAGE

TEST SCRIPT LANGUAGE

Text file with one command listed per line
First word is always the command name
Remaining words are arguments

Commands will correspond to methods in
your code

TEST SCRIPT LANGUAGE (ex .test file)

Create a graph
CreateGraph graphl

Add a pair of nodes
AddNode graphl nl
AddNode graphl n2

Add an edge
AddEdge graphl nl n2 el

Print the nodes in the graph
and the outgoing edges from nl
ListNodes graphl

ListChildren graphl nl

TEST SCRIPT LANGUAGE

CreateGraph A
AddNode A nl
AddNode A n2

CreateGraph B
ListNodes B
AddNode A n3
AddEdge A n3 nl e3l1
AddNode B nl
AddNode B n2
AddEdge B n2 nl e2l
AddEdge A nl n3 el3

AddEdge A nl n2 el2
ListNodes A
ListChildren A nl
ListChildren B n2

How To Create Specification Tests

Create .test and .expected file pairs under hw5.test
Find correct format for expected output in hw5 instructions

Implement parts of HW5TestDriver
driver connects commands from .test file to your Graph
implementation to the output which is matched with .expected file

Run all tests by running SpecificationTests.java
Note: staff will have our own .test and .expected pairs to run with
your code
So do not hardcode .test/.expected pairs to pass, but instead make
sure the format in hw5 instructions is correctly followed

DEMO: TEST SCRIPT LANGUAGE

JAVADOC API

Now you can generate the JavaDoc API for your
code (Optional)

Instructions online: http://courses.cs.

washington.
edu/courses/cse331/15sp/tools/editing-
compiling.html#javadoc

Demo: Generate JavaDocs

http://courses.cs.washington.edu/courses/cse331/15sp/tools/editing-compiling.html#javadoc
http://courses.cs.washington.edu/courses/cse331/15sp/tools/editing-compiling.html#javadoc
http://courses.cs.washington.edu/courses/cse331/15sp/tools/editing-compiling.html#javadoc
http://courses.cs.washington.edu/courses/cse331/15sp/tools/editing-compiling.html#javadoc
http://courses.cs.washington.edu/courses/cse331/15sp/tools/editing-compiling.html#javadoc
http://courses.cs.washington.edu/courses/cse331/15sp/tools/editing-compiling.html#javadoc
http://courses.cs.washington.edu/courses/cse331/15sp/tools/editing-compiling.html#javadoc

