PREPPRING FRADATE:| [~V ¥ ~ ¥ ° v V| (oA~

ool

OKAY, WHAT KINDS OF HM. WHICH SNAKES ARE
WHAT SITUATIONS EMERGENCIES CAN HAPPEN? DANGEROUS? LETS SEE... THE RESEARCH (OMPARING

MGHTT FREPARE RR?) A) SNAKEBITE
1) MEDICAL EMERGENCY B) LIGHINING STRIKE

®) 0
o O~ 0
o

A

L,) FOOD TOEXPENSIVE Ww

DA)®) CORN SNAKE D”‘;"R SNAKE VENOMS 1S SCATTERED

AND INCONSISTENT. TLL MAKE

OOO

&

NOTE: Hmwrk 4 is
published in the

IMHERETOPKK BY Dy, THE INLAND

YOUUP. YOURE TAIPAN HAS THE DEADUEST

NGTDR'E%ED\ ? VENOM OF ANY SNAKE
)

'S

T REALY NEED To SToP
USING DEPTH-FIRST SEARCHES.

Section 7:
Dijkstra’s

SLIDES ADAPTED FROM ALEX
MARIAKAKIS

WITH MATERIAL KELLEN DONOHUE,
DAVID MAILHOT, AND DAN GROSSMAN

Things to Discuss

Late days
> 4 assignments left, including Hmwrk 6

> Late Days are marked in Catalyst — Updated through Hmwrk 4
Hmwrk 4 is grades are published. Woot!

Hmwrk 5 is getting returned soon-ish. Finishing up grading now. Returning in
time for you to check it again Hmwrk 6.

Hints from a Hmwrk-Grader:
o Answers.txt — Hint:

° “Name: <replace this with your name>"
> JavaDoc Comments — Should contain a general overview of the method
° Minimize the asserts per test

Review: Shaortest Paths with BFS

From Node B

Destination Path

B 0

D <B,D> 1

Review: Shaortest Paths with BFS

From Node B

Destination Path Cost
A <B,A>

<B,A,C>
<B,D>

1
0
2
1

m O O

Shortest Paths with Weights

From Node B

Destination Path

s with Weights

From Node B

Shortest Pg

Destination Path Cost
A <B,A> 2
B 0
C <B,A,C> 5
D <B,A,C,D> 7
E <B,A,C,E> .

Goal: Smallest
cost? Or fewest
edges?

BFS vs. Dijkstra’s

100 ,~ 100
100 100

500

BFS doesn’t work because path with minimal cost # path with fewest edges
Also, Dijkstra’s works if the weights are non-negative

What happens if there is a negative edge?
° Minimize cost by repeating the cycle forever

Dijkstra’s Algorithm

Named after its inventor Edsger Dijkstra (1930-2002)
> Truly one of the “founders” of computer science;

> This is just one of his many contributions

The idea: reminiscent of BFS, but adapted to handle weights
° Grow the set of nodes whose shortest distance has been computed
> Nodes not in the set will have a “best distance so far”

> A PRIORITY QUEUE will turn out to be useful for efficiency — We’'ll cover this
later in the slide deck

Dijkstra’s Algorithm

1. Foreachnodev,set v.cost = « andv.known = false

7. Set source.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) Foreach edge (v, u) with weight w,
cl = v.cost + w

CZ2 = u.cost // cost of best path through v to u
if(cl < c2)

u.cost = cl

// cost of best path to u previously known

// if the new path through v is better, update
u.path = v

Example #1

W
0 o - W] W
Goal: Fully explore
the graph
known? cost path
Y 0

(o 9]

(o 0]

Order Added to Known Set:

T(OQ(MM OO |
8

Example

Order Added to Known Set:

known? cost path
Y 0
<2 A
<1 A
<4 A

A

T(OQ(MM OO |

Order Added to Known Set:

known? cost path
Y 0
<2 A
Y 1 A
<4 A

A, C

T(OQ(MM OO |

Example #1
5 2

vertex | known? cost path

Order Added to Known Set:

_<
O|>|>|>

A, C

T OMMOO|W
IA
N

known? cost path

Order Added to Known Set:

_<
O|>|>|>

A CB

T OMMOO|W
IA
N

known? cost path

Order Added to Known Set:

IN
TN
D (O|I>|> | >

A CB

T OMMOO|W
IA
N

Example #1
5 2

. vertex | known? cost path
7 12
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E <12 C
A CB,D F =4 B
G
H

2

Example #1

Order Added to Known Set:

A, CB,D,F

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G

H

known? cost path
Y 0
B Y 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E <12 C
A, C,B,D,F F Y 4 B
G o0
H <7 F

Example #1
5 2

. vertex | known? cost path
7 12
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E <12 C
A CB D FH F Y 4 B
G 00
H Y 7 F

Example
Py 2

. vertex | known? cost path

<|=<|=<

Order Added to Known Set:

<

A CB,D,FH

T(OQ(MM OO |
7
Aol
N
M| IT[(@|IOI>|>|>

Order Added to Known Set:

A CB,D,FHG

known? cost path
Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

A CB,D,FHG

known? cost path
Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <11 G
F Y 4 B
G Y 8 H
H Y 7 F

Example
Py ‘ 2

. vertex | known? cost path

Order Added to Known Set:

A CB,DFHG,E

T OMMOO|W
e dEdEdEdEdE dE <
MIT| WO | > >|>

nterBreh ng the Results
vertex | known? cost path
@ A Y 0
Y 2 A
Y 1 A
Y 4 A
Y 11 G
Y 4 B
Y 8 H
Y 7 F

Example #2

0 2.4

2
() B
1 W
2 i E
|
D
o— 53
6 W
2 , | G vertex | known? | cost path
F A Y 0

Order Added to Known Set:

@QMMO|O |
8

vertex | known? cost path

A Y 0

B Y 3 E

C Y 2 A
Order Added to Known Set: D Y L A

E Y 2 D
A D,CEBFG F Y 4 C

G Y 6 D

Pseudocode Attempt #1

dijkstra (Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while (not all nodes are known) {
b = dequeue
b.known = true
for each edge (b,a) in G {
if ('a.known) {
1f(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight((b,a))
a.path = b

Can We Do Better?

Increase efficiency by considering lowest cost unknown vertex with
sorting instead of looking at all vertices

PriorityQueue is like a queue, but returns elements by lowest value
instead of FIFO

Priority Queue

Increase efficiency by considering lowest cost unknown
vertex with sorting instead of looking at all vertices

PriorityQueue is like a queue, but returns elements by
lowest value instead of FIFO

Two ways to implement:
1. Comparable

a) class Node implements Comparable<Node>
b) public int compareTo(other)
2. Comparator
a) class NodeComparator extends Comparator<Node>
b) new PriorityQueue(new NodeComparator())

Pseudocode Attempt #2

dijkstra (Graph G, Node start) { ——

for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while (heap is not empty) {

b = deleteMin ()

i1f (b.known) continue;

b.known = true

for each edge (b,a) in G {

if (!'a.known) {
add (b.cost + weight((b,a)))

omework 7

Modify your graph to use generics
> Will have to update HW #5 and HW #6 tests

Implement Dijkstra’s algorithm
© Search algorithm that accounts for edge weights

> Note: This should not change your implementation of Graph. Dijkstra’s is
performed on a Graph, not within a Graph.

omework 7

The more well-connected two characters are, the lower the weight and
the more likely that a path is taken through them

> The weight of an edge is equal to the inverse of how many comic books the
two characters share

> Ex: If Amazing Amoeba and Zany Zebra appeared in 5 comic books together,
the weight of their edge would be 1/5

w7/ Important Notes!!!

DO NOT access data from hw6/src/data
> Copy over data files from hw6/src/data into hw7/src/data, and access data

in hw7 from there instead

° Remember to do this! Or tests will fail when grading.

DO NOT modify ScriptFileTests.java

Hw7/ Test script Command
Notes

HW?7 LoadGraph command is slightly different from HW6

o After graph is loaded, there should be at most one directed edge from one
node to another, with the edge label being the multiplicative inverse of the
number of books shared

> Example: If 8 books are shared between two nodes, the edge label will be
1/8

> Since the edge relationship is symmetric, there would be another edge going
the other direction with the same edge label

Generics

We will go over these in lecture tomorrow!

