
CSE 331
Software Design & Implementation

Hal Perkins
Fall 2015

Lecture 2 – Reasoning About Code With Logic
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins)

Announcements

•  Discussion board: be sure to post a reply to the welcome message
•  Office hours doodle: add your preferences

•  HW0 due tomorrow before class (10 am)
–  No late days / late assignments allowed this time

•  Next few lectures: two presentations on the web
–  Powerpoint slides
–  Lecture notes

 Read both – they are complementary

•  HW1 out now. Programming logic with no loops. Due in a week.

CSE 331 Fall 2015 2

Reasoning about code

Determine what facts are true as a program executes
–  Under what assumptions

Examples:
–  If x starts positive, then y is 0 when the loop finishes
–  Contents of the array that arr refers to are sorted
–  Except at one code point, x + y == z
–  For all instances of Node n,

 n.next == null ∨ n.next.prev == n
–  …

CSE 331 Fall 2015 3

Why do this?

•  Essential complement to testing, which we will also study
–  Testing: Actual results for some actual inputs
–  Logical reasoning: Reason about whole classes of inputs/

states at once (“If x > 0, …”)
•  Prove a program correct (or find bugs trying)
•  Understand why code is correct

•  Stating assumptions is the essence of specification
–  “Callers must not pass null as an argument”
–  “Callee will always return an unaliased object”
–  …

CSE 331 Fall 2015 4

Our approach

•  Hoare Logic: a 1970s approach to logical reasoning about code
–  For now, consider just variables, assignments, if-statements,

while-loops
•  So no objects or methods

•  This lecture: The idea, without loops, in 3 passes
1.  High-level intuition of forward and backward reasoning
2.  Precise definition of logical assertions, preconditions, etc.
3.  Definition of weaker/stronger and weakest-precondition

•  Next lecture: Loops

CSE 331 Fall 2015 5

Why?

•  Programmers rarely “use Hoare logic” in this much detail
–  For simple snippets of code, it’s overkill
–  Gets very complicated with objects and aliasing
–  But can be very useful to develop and reason about loops and

data with subtle invariants
•  Examples: Homework 0, Homework 2

•  Also it’s an ideal setting for the right logical foundations
–  How can logic “talk about” program states?
–  How does code execution “change what is true”?
–  What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does
happen All the Time in The Real World® (coming lectures)

CSE 331 Fall 2015 6

Example

Forward reasoning:
–  Suppose we initially know (or assume) w > 0
 // w > 0
 x = 17;
 // w > 0 ∧ x == 17
 y = 42;
 // w > 0 ∧ x == 17 ∧ y == 42
 z = w + x + y;
 // w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59
 …

–  Then we know various things after, including z > 59

CSE 331 Fall 2015 7

Example

Backward reasoning:
–  Suppose we want z to be negative at the end
 // w + 17 + 42 < 0
 x = 17;
 // w + x + 42 < 0
 y = 42;
 // w + x + y < 0
 z = w + x + y;
 // z < 0

–  Then we know initially we need to know/assume w < -59
•  Necessary and sufficient

CSE 331 Fall 2015 8

Forward vs. Backward, Part 1

•  Forward reasoning:
–  Determine what follows from initial assumptions
–  Most useful for maintaining an invariant

•  Backward reasoning
–  Determine sufficient conditions for a certain result

•  If result desired, the assumptions suffice for correctness
•  If result undesired, the assumptions suffice to trigger bug

CSE 331 Fall 2015 9

Forward vs. Backward, Part 2

•  Forward reasoning:
–  Simulates the code (for many “inputs” “at once”)
–  Often more intuitive
–  But introduces [many] facts irrelevant to a goal

•  Backward reasoning
–  Often more useful: Understand what each part of the code

contributes toward the goal
–  “Thinking backwards” takes practice but gives you a

powerful new way to reason about programs

CSE 331 Fall 2015 10

Conditionals

 // initial assumptions
 if(…) {

 … // also know test evaluated to true
 } else {
 … // also know test evaluated to false
 }

 // either branch could have executed

Two key ideas:

1.  The precondition for each branch includes information
about the result of the test-expression

2.  The overall postcondition is the disjunction (“or”) of the
postcondition of the branches

CSE 331 Fall 2015 11

Example (Forward)

Assume initially x >= 0

 // x >= 0
 z = 0;
 // x >= 0 ∧ z == 0
 if(x != 0) {
 // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
 z = x;
 // … ∧ z > 0

 } else {
 // x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)

 z = x + 1;
 // … ∧ z == 1

 }
 // (… ∧ z > 0) ∨ (… ∧ z == 1) (so z > 0)

CSE 331 Fall 2015 12

Our approach

•  Hoare Logic, a 1970s approach to logical reasoning about code
–  [Named after its inventor, Tony Hoare]
–  Considering just variables, assignments, if-statements,

while-loops
•  So no objects or methods

•  This lecture: The idea, without loops, in 3 passes
1.  High-level intuition of forward and backward reasoning
2.  Precise definition of logical assertions, preconditions, etc.
3.  Definition of weaker/stronger and weakest-precondition

•  Next lecture: Loops

CSE 331 Fall 2015 13

Some notation and terminology
•  The “assumption” before some code is the precondition
•  The “what holds after (given assumption)” is the postcondition

•  Instead of writing pre/postconditions after //, write them in {…}
–  This is not Java
–  How Hoare logic has been written “on paper” for 40ish years
 { w < -59 }
 x = 17;
 { w + x < -42 }

–  In pre/postconditions, = is equality, not assignment
•  Math’s “=”, which for numbers is Java’s ==

 { w > 0 ∧ x = 17 }
 y = 42;
 { w > 0 ∧ x = 17 ∧ y = 42 }

CSE 331 Fall 2015 14

What an assertion means

•  An assertion (pre/postcondition) is a logical formula that can
refer to program state (e.g., contents of variables)

•  A program state is something that “given” a variable can “tell
you” its contents
–  Or any expression that has no side-effects

•  An assertion holds for a program state, if evaluating using the
program state produces true
–  Evaluating a program variable produces its contents in the

state

–  Can think of an assertion as representing the set of (exactly
the) states for which it holds

CSE 331 Fall 2015 15

A Hoare Triple

•  A Hoare triple is two assertions and one piece of code:
{P} S {Q}

–  P the precondition
–  S the code (statement)
–  Q the postcondition

•  A Hoare triple {P} S {Q} is (by definition) valid if:
–  For all states for which P holds, executing S always

produces a state for which Q holds
–  Less formally: If P is true before S, then Q must be true after
–  Else the Hoare triple is invalid

CSE 331 Fall 2015 16

Examples

Valid or invalid?
–  (Assume all variables are integers without overflow)

•  {x != 0} y = x*x; {y > 0}
•  {z != 1} y = z*z; {y != z}
•  {x >= 0} y = 2*x; {y > x}
•  {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5}
•  {true} (x = y; z = x;) {y=z}
•  {x=7 ∧ y=5}
 (tmp=x; x=tmp; y=x;)
 {y=7 ∧ x=5}

CSE 331 Fall 2015 17

Examples

Valid or invalid?
–  (Assume all variables are integers without overflow)

•  {x != 0} y = x*x; {y > 0} valid
•  {z != 1} y = z*z; {y != z} invalid
•  {x >= 0} y = 2*x; {y > x} invalid
•  {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5} valid
•  {true} (x = y; z = x;) {y=z} valid
•  {x=7 ∧ y=5} invalid
 (tmp=x; x=tmp; y=x;)
 {y=7 ∧ x=5}

CSE 331 Fall 2015 18

Aside: assert in Java

•  An assertion in Java is a statement with a Java expression, e.g.,
assert x > 0 && y < x;

•  Similar to our assertions
–  Evaluate using a program state to get true or false
–  Uses Java syntax

•  In Java, this is a run-time thing: Run the code and raise an
exception if assertion is violated
–  Unless assertion-checking is disabled
–  Later course topic

•  This week: we are reasoning about the code, not running it on
some input

CSE 331 Fall 2015 19

The general rules

•  So far: Decided if a Hoare triple was valid by using our
understanding of programming constructs

•  Now: For each kind of construct there is a general rule
–  A rule for assignment statements
–  A rule for two statements in sequence
–  A rule for conditionals
–  [next lecture:] A rule for loops
–  …

CSE 331 Fall 2015 20

Assignment statements

{P} x = e; {Q}

•  Let Q’be like Q except replace every x with e
•  Triple is valid if:
 For all program states, if P holds, then Q’ holds

–  That is, P implies Q’, written P => Q’

•  Example: {z > 34} y=z+1; {y > 1}
–  Q’ is {z+1 > 1}

CSE 331 Fall 2015 21

Sequences

CSE 331 Fall 2015 22

{P} S1;S2 {Q}

•  Triple is valid if and only if there is an assertion R such that

–  {P}S1{R} is valid, and
–  {R}S2{Q} is valid

•  Example: {z >= 1} y=z+1; w=y*y; {w > y} (integers)
–  Let R be {y > 1}
–  Show {z >= 1} y=z+1; {y > 1}

•  Use rule for assignments: z >= 1 implies z+1 > 1
–  Show {y > 1} w=y*y; {w > y}

•  Use rule for assignments: y > 1 implies y*y > y

Conditionals

CSE 331 Fall 2015 23

{P} if(b) S1 else S2 {Q}

•  Triple is valid if and only if there are assertions Q1,Q2 such that

–  {P ∧ b}S1{Q1} is valid, and
–  {P ∧ !b}S2{Q2} is valid, and
–  Q1 ∨ Q2 implies Q

•  Example: {true} (if(x > 7) y=x; else y=20;) {y > 5}
–  Let Q1 be {y > 7} (other choices work too)
–  Let Q2 be {y = 20} (other choices work too)
–  Use assignment rule to show {true ∧ x > 7}y=x;{y>7}
–  Use assignment rule to show {true ∧ x <= 7}y=20;{y=20}
–  Indicate y>7 ∨ y=20 implies y>5

Our approach

•  Hoare Logic, a 1970s approach to logical reasoning about code
–  Considering just variables, assignments, if-statements,

while-loops
•  So no objects or methods

•  This lecture: The idea, without loops, in 3 passes
1.  High-level intuition of forward and backward reasoning
2.  Precise definition of logical assertions, preconditions, etc.
3.  Definition of weaker/stronger and weakest-precondition

•  Next lecture: Loops

CSE 331 Fall 2015 24

Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:
–  P1 is stronger than P2
–  P2 is weaker than P1

•  Whenever P1 holds, P2 also holds
•  So it is more (or at least as) “difficult” to satisfy P1

–  The program states where P1 holds are a subset of the
program states where P2 holds

•  So P1 puts more constraints on program states
•  So it’s a stronger set of obligations/requirements

CSE 331 Fall 2015 25

Examples

•  x = 17 is stronger than x > 0

•  x is prime is neither stronger nor weaker than x is odd

•  x is prime and x > 2 is stronger than
x is odd and x > 2

•  …

CSE 331 Fall 2015 26

Why this matters to us

•  Suppose:
–  {P}S{Q}, and
–  P is weaker than some P1, and
–  Q is stronger than some Q1

•  Then: {P1}S{Q} and {P}S{Q1} and {P1}S{Q1}

•  Example:
–  P is x >= 0
–  P1 is x > 0
–  S is y = x+1
–  Q is y > 0
–  Q1 is y >= 0

CSE 331 Fall 2015 27

So…

•  For backward reasoning, if we want {P}S{Q}, we could instead:
–  Show {P1}S{Q}, and
–  Show P => P1

•  Better, we could just show {P2}S{Q} where P2 is the weakest
precondition of Q for S
–  Weakest means the most lenient assumptions such that Q

will hold after executing S
–  Any precondition P such that {P}S{Q} is valid will be

stronger than P2, i.e., P => P2

•  Amazing (?): Without loops/methods, for any S and Q, there
exists a unique weakest precondition, written wp(S,Q)
–  Like our general rules with backward reasoning

CSE 331 Fall 2015 28

Weakest preconditions

•  wp(x = e;, Q) is Q with each x replaced by e
–  Example: wp(x = y*y;, x > 4) = y*y > 4, i.e., |y| > 2

•  wp(S1;S2, Q) is wp(S1,wp(S2,Q))
–  i.e., let R be wp(S2,Q) and overall wp is wp(S1,R)
–  Example: wp((y=x+1; z=y+1;), z > 2) =

 (x + 1)+1 > 2, i.e., x > 0

•  wp(if b S1 else S2, Q) is this logic formula:
(b ∧ wp(S1,Q)) ∨ (!b ∧ wp(S2,Q))

–  (In any state, b will evaluate to either true or false…)
–  (You can sometimes then simplify the result)

CSE 331 Fall 2015 29

Simple examples

•  If S is x = y*y and Q is x > 4,
 then wp(S,Q) is y*y > 4, i.e., |y| > 2

•  If S is y = x + 1; z = y – 3; and Q is z = 10,
 then wp(S,Q) …
 = wp(y = x + 1; z = y – 3;, z = 10)
 = wp(y = x + 1;, wp(z = y – 3;, z = 10))
 = wp(y = x + 1;, y-3 = 10)
 = wp(y = x + 1;, y = 13)
 = x+1 = 13
 = x = 12

CSE 331 Fall 2015 30

Bigger example

CSE 331 Fall 2015 31

-4 -3 -2 -1 0 7 2 1 4 6 5 3 8 9

S is if (x < 5) {
 x = x*x;
 } else {
 x = x+1;
 }
Q is x >= 9

wp(S, x >= 9)
= (x < 5 ∧ wp(x = x*x;, x >= 9))
 ∨ (x >= 5 ∧ wp(x = x+1;, x >= 9))
= (x < 5 ∧ x*x >= 9)
 ∨ (x >= 5 ∧ x+1 >= 9)
= (x <= -3) ∨ (x >= 3 ∧ x < 5)
 ∨ (x >= 8)

If-statements review

CSE 331 Fall 2015 32

Forward reasoning

{P}
if B
 {P ∧ B}
 S1
 {Q1}
else
 {P ∧ !B}
 S2
 {Q2}
{Q1 ∨ Q2}

Backward reasoning

{ (B ∧ wp(S1, Q))
 ∨ (!B ∧ wp(S2, Q)) }
if B
 {wp(S1, Q)}
 S1
 {Q}
else
 {wp(S2, Q)}
 S2
 {Q}
{Q}

“Correct”

•  If wp(S,Q) is true, then executing S will always produce a state
where Q holds
–  true holds for every program state

CSE 331 Fall 2015 33

One more issue

•  With forward reasoning, there is a problem with assignment:
–  Changing a variable can affect other assumptions

•  Example:
 {true}
 w=x+y;
 {w = x + y;}
 x=4;
 {w = x + y ∧ x = 4}
 y=3;
 {w = x + y ∧ x = 4 ∧ y = 3}
 But clearly we do not know w=7!

 CSE 331 Fall 2015 34

The fix

•  When you assign to a variable, you need to replace all other
uses of the variable in the post-condition with a different variable
–  So you refer to the “old contents”

•  Corrected example:
 {true}
 w=x+y;
 {w = x + y;}
 x=4;
 {w = x1 + y ∧ x = 4}
 y=3;
 {w = x1 + y1 ∧ x = 4 ∧ y = 3}

CSE 331 Fall 2015 35

Useful example

•  Swap contents
–  Give a name to initial contents so we can refer to them in the

post-condition
–  Just in the formulas: these “names” are not in the program
–  Use these extra variables to avoid “forgetting” “connections”

 {x = x_pre ∧ y = y_pre}
 tmp = x;
 {x = x_pre ∧ y = y_pre ∧ tmp=x}
 x = y;
 {x = y ∧ y = y_pre ∧ tmp=x_pre}
 y = tmp;
 {x = y_pre ∧ y = tmp ∧ tmp=x_pre}

CSE 331 Fall 2015 36

