The 9 Stages of Dehugging

At some point in each of our lives, we must face errors in our code.
Debugging is a natural healing process to help us through these times.
It is important to recognize these common stages and realize that
debugging will eventually come to an end.

)
?

| N —
)

) N —

o oo
¢/

| Nl —
)

This stage is often characterized by such phrases as
"What? That's impossible," or "I know this is right." A
strong sign of denial is recompiling without changing
any code, "just in case."

Bargaining/Self-Blame

Several programming errors are uncovered and the
programmer feels stupid and guilty for having made
them. Bargaining is common: "If | fix this, will you
please compile?" Also, "I only have 14 errors to go!"

Cryptic error messages send the programmer into a
rage. This stage is accompanied by an hours-long
and profanity-filled diatribe about the limitations of
the language directed at whomever will listen.

Following the outburst, the programmer becomes
aware that hours have gone by unproductively and
there is still no solution in sight. The programmer
becomes listless. Posture often deteriorates.

The programmer finally accepts the situation, declares
the bug a "feature”, and goes to play some Quake.

Section 9:
Design Patterns

Slides by Alex Mariakakis

with material from David Mailhot,
Hal Perkins, Mike Ernst

Agenda

 What are design patternse
« Creational patterns
« Structural patterns

What Is A Design Pattern

« A standard solution to a common programming
problem

« A fechnigue for making code more flexible

« Shorthand for describing program design and how
program components are connected

Creational Patterns

 Problem: Constructors in Java are not flexible

o Always return a fresh new object, never reuse one
o Can'treturn a subtype of the class they belong to

« Solution: Creational patterns!
o Sharing
« Singleton
 Interning
« Flyweight
o Factories
* Factory method
« Factory object
o Builder

Creational Patterns:
Sharing

The old way: Java constructors always return a new
object

Singleton: only one object exists at runtime
o Factory method returns the same object every time

Interning: only one object with a parficular
(abstract) value exists at runtime
o Factory method returns an existing object, not a new one

Flyweight: separate infrinsic and exirinsic state,
represents them separately, and interns the intrinsic
state

o Implicit representation uses no space
o Not as common/important

Creational Patterns:
Singleton

« For a class where only one object of that class can
ever exist

» Two possible implementations
o Eagerinstantiation: creates the instance when the class is loaded
to guarantee availability

o Lazy instantiation: only creates the instance once it's needed to
avoid unnecessary creation

Creational Patterns:
Singleton

« Eager instantiation

public class Bank {
private static Bank INSTANCE = new Bank();

// private constructor
private Bank() { .. }

// factory method

public static Bank getInstance() {
return INSTANCE;

}

Bank—b—=new Bank{+
Bank b = Bank.getInstance()

Creational Patterns:
Singleton

« Lazy instantiation

public class Bank {
private static Bank INSTANCE;

// private constructor
private Bank () { .. }

// factory method
public static Bank getlInstance () {
if (INSTANCE == null) {

INSTANCE = new Bank() ;
}
return INSTANCE;

}

Barnk—b—=——rnew Bank+
Bank b = Bank.getInstance()

Creational Patterns:
Singleton

 Would you prefer eager or lazy instantiation for an
HTTPRequest classe
o handles authenfication
o definitely needed for any HTTP transaction

 Would you prefer eager or lazy instantiation for @
Comparator classe

o compares objects
o may or may not be used at runtime

Creational Patterns:
Singleton

public class HttpRequest {
private static class HttpRequestHolder {
public static final HttpRequest INSTANCE =
new HttpRequest();

/* Singleton - Don’t instantiate */

private HttpRequest () { .. }

public static HttpRequest getInstance () {
return HttpRequestHolder.INSTANCE;

Creational Patterns:
Singleton

public class LengthComparator implements Comparator<String> {

private int compare (String sl, String s2) {

return sl.length()-s2.length();

/* Singleton — Don’t instantiate */

private LengthComparator () { .. }
private static LengthComparator comp = null;

public static LengthComparator getlInstance () |
1f (comp == null) {
comp = new LengthComparator () :;

}

return comp;

Creational Patterns:
Interning

Similar to Singleton, except instead of just having
one object per class, there’s one object per
abstract value of the class

Saves memory by compacting multiple copies

Requires the class being interned to be immutable.
Why<e

Creational Patterns:
Interning

public class Point {

private int x, y;

public Point (int x, int y) {
this.x = x;
this.y = y;
}
public int getX() { return x; }
public int getY¥ () { return y; }

@Override
public String toString () {

return \\ (II _I_ X _|_ \\,Il _|_ y + \\) /I;

Creational Patterns:
Interning

public class Point {
private static Map<String, Point> instances =

new WeakHashMap<String, Point>();

public static Point getInstance (int x, int vy) {
String key = x + V7, + vy;
if (!'instances.containsKey (key))
instances.put (key, new Point (x,vy));

return instances.get (key);

private final int x, y; // immutable
private Point (int x, 1int y) {..}

}

If our point was represented with r and theta, we'd need to constrain them
for use in the key. Otherwise, we'd have 5, pi” and "5, 3pi” as different
e entries in our map even though they are the same absiract value. o

Creational Patterns:
Factories

public class City {

public Stereotype getStereotypicalPerson() {..}
}

City seattle = new City();
seattle.getSterotypicalPerson() ;
// we want a SeattleStereotype

Creational Patterns:
Factories

* Factories solve the problem that Java constructors
cannoft return a subtype of the class they belong 1o

* Two options:
o Factory method
* Helper method creates and returns objects

 Method defines the interface for creating an object,
but defers instantiation to subclasses

o Factory object
« Abstract superclass defines what can be customized

 Concrete subclass does the customization, returns
appropriate subclass

« Object provides the interface for creating families of
related/dependent objects without specifying their
concrete classes

Creational Patterns:
Factory Method

public class City {
public Stereotype getStereotypicalPerson () {..}
}
public class Seattle extends City ({
@Override
public Stereotype getStereotypicalPerson() {
return new SeattleStereotype() ;

}
City seattle = new Seattle();

seattle.getSterotypicalPerson() ;

Creational Patterns:
Factory Object

interface StereotypeFactory ({
Stereotype getStereotype() ;

}
class SeattleStereotypeFactory implements StereotypeFactory ({

public Stereotype getStereotype() ({
return new SeattleStereotype() ;

}
public class City {
public City(StereotypeFactory f) {..}

public Stereotype getStereotypicalPerson() {
f.getStereotype() ;

}
City seattle =
seattle.getSterotypicalPerson() ;

new City(new SeattleStereotypeFactory()) ;

Creational Patterns:
Factory Object

interface Button { interface GUIFactory {

void paint (), Button createButton() ;

class WinButton implements Button { class WinFactory implements
GUIFactory {

public Button createButton() ({
return new WinButton() ;

public void paint () {

System.out.println("I'm a

WinButton") ;
}
} }
}
class OSXFactory implements
class OSXButton implements Button { GUIFactory {
public void paint () { public Button createButton() {
System.out.println("I'm an return new OSXButton();
OSXButton") ; }

} }
}

From: http://en.wikipedia.org/wiki/Abstract factory pattern
@ [)

http://en.wikipedia.org/wiki/Abstract_factory_pattern

Creational Patterns:
Factory Object

public class Application {
public static void main(Stringl[] args) {
GUIFactory factory = createOSSpecificFactory();
Button button = factory.createButton()

button.paint () ;

public static GUIFactory createOsSpecificFactory () {
int sys = readFromConfigFile ("OS TYPE");
1if (sys == 0) return new WinFactory ()

else return new OSXFactory();

From: http://en.wikipedia.org/wiki/Abstract factory pattern
@

http://en.wikipedia.org/wiki/Abstract_factory_pattern

Creational Patterns:
Builder

The class has an inner class Builder and is created
using the Builder instead of the consftructor

The Builder takes optional parameters via setter
methods (e.g., setX (), setY (), efc.)

When the client is done supplying parameters, she
calls build () on the Builder, finalizing the builder

and returning an instance of the object desired

Creational Patterns:
Builder

private final int servingSize, servings;
// optional
private final int calories, fat, sodium;

public NutritionFacts (int servingSize, int servings) {
this(servingSize, servings, 0);

}

public NutritionFacts (int servingSize, int servings, int calories) {
this(servingSize, servings, calories, 0);

}

public NutritionFacts (int servingSize, int servings, int calories, int fat) {
this(servingSize, servings, calories, fat, 0);

}

public NutritionFacts (int servingSize, int servings, int calories, int fat,
int sodium) {

this.servingSize = servingSize;

this.servings servings;

this.calories calories;

this.fat = fat;

this.sodium = sodium;

Creational Patterns:
Builder

private final int servingSize, servings, calories, fat, sodium;

public static class Builder {
// required
private final int servingSize, servings;
// optional, initialized to default values
private final int calories = 0;
private final int fat = 0;
private final int sodium = 0;

public Builder (int servingSize, int servings) {

this.servingSize = servingSize;

this.servings = servings;
}
public Builder calories(int wval) { calories = val; return this; }
public Builder fat(int wval) { fat = wval; return this; }
public Builder sodium(int wval) { sodium = val; return this; }
public NutritionFacts build() { return new NutritionFacts (this); }

public NutritionFacts (Builder builder) {
this.servingSize = builder.servingSize;
this.servings builder.servings;
this.calories builder.calories;
this. fat = builder.fat;
this.sodium builder.sodium;

Creational Patterns:
Builder

« Useful when you have many constructor

parameters
o Itis hard to remember which order they should all go in

« Easily allows for optional parameters

o If you have n optional parameters, you need 2/An constructors,
but only one builder

Structural Patterns

* Problem: Sometimes difficult to realize relationships
between entities
o Important for code readability

« Solution: Structural patterns!

o We're just going to talk about wrappers, which translate between
iIncompatible interfaces

Adapter same different modity the interface
Decorator different same extend behavior
Proxy same same restrict access

Structural Patterns:
Adapter

« Changes an interface without changing

functionality
o Rename a method
o Convert units

« Examples:
o Angles passed in using radians vs. degrees
o Bytes vs. strings
o Hex vs. decimal numbers

Structural Patterns:
Decorator

Adds functionality without changing the interface
o Add caching

Adds to existing methods to do something
additional while still preserving the previous spec
o Add logging

Decorators can remove functionality without

changing the interface
o UnmodifiableList with add () and put ()

Structural Patterns:
Proxy

Wraps the class while maintaining the same
inferface and functionality

Integer vs. int, Boolean vs. boolean

Controls access to other objects

o Communication: manage network details when using a remote
object

o Security: permit access only if proper credentials

o Creation: object might not yet exist because creation is
expensive

