
A physicist, an engineer and a programmer were in a

car driving over a steep alpine pass when the brakes

failed. The car was getting faster and faster, they were

struggling to get round the corners and once or twice

only the feeble crash barrier saved them from

crashing down the side of the mountain. They were

sure they were all going to die, when suddenly they

spotted an escape lane. They pulled into the escape

lane and came safely to a halt.

The physicist said "We need to model the friction in

the brake pads and the resultant temperature rise,

see if we can work out why they failed".

The engineer said "I think I've got a few wrenches in

the back. I'll take a look and see if I can work out

what's wrong".

The programmer said "Why don't we try again and

see if it's reproducible?"

Slides by Alex Mariakakis

with material from Krysta Yousoufian,

Kellen Donohue, and James Fogarty

Section 8:
Model-View-Controller

MVC
• The classic design pattern

• Used for data-driven user applications

• Such apps juggle several tasks:
o Loading and storing the data – getting it in/out of storage on

request

o Constructing the user interface – what the user sees

o Interpreting user actions – deciding whether to modify the UI or

data

• These tasks are largely independent of each other

• Model, view, and controller each get one task

Model
talks to data

source to retrieve

and store data

Which database table

is the requested data

stored in?

What SQL query will

get me the data

I need?

View
asks model for

data and presents

it in a user-friendly

format

Would this text look

better blue or red? In

the bottom corner

or front and center?

Should these items go in

a dropdown list or radio

buttons?

Controller
listens for the user

to change data or

state in the UI,

notifying the

model or view

accordingly

The user just clicked the

“hide details” button. I

better tell the view.

The user just changed the

event details. I better let

the model know to

update the data.

Benefits of MVC
• Organization of code

o Maintainable, easy to find what you need

• Ease of development
o Build and test components independently

• Flexibility
o Swap out views for different presentations of the same data (ex:

calendar daily, weekly, or monthly view)

o Swap out models to change data storage without affecting user

MVC Flow in Theory

Model

View

Controller

MVC Flow
• In theory…

o Pattern of behavior in response to inputs (controller) are

independent of visual geometry (view)

o Controller contacts view to interpret what input events should

mean in the context of the view

• In practice…
o View and controller are so intertwined that they almost always

occur in matched pairs (ex: command line interface)

o Many architectures combine the two

MVC Flow in Practice

Model

View

Controller

Push vs. Pull

Model

View

Controller

Push vs. Pull Architecture
• Push architecture

o As soon as the model changes, it notifies all of the views

• Pull architecture
o When a view needs to be updated, it asks the model for new

data

• Advantages for push
o Guaranteed to have latest data in case something goes wrong

later on

• Advantages for pull
o Avoid unnecessary updates, not nearly as intensive on the view

MVC Example –
Traffic Signal

Traffic Signal – MVC
Component Model View Controller

Detect cars waiting to enter
intersection

Traffic lights to direct car traffic

Regulate valid traffic movements

Manual override for particular
lights

Detect pedestrians waiting to cross

Pedestrian signals to direct
pedestrians

External timer which triggers
changes at set interval

X

X

X

X

X

X

X

Traffic Signal
• Model

o Stores current state of traffic flow

• Knows current direction of traffic

• Capable of skipping a light cycle

o Stores whether there are cars and/or pedestrians waiting

• View
o Conveys information to cars and pedestrians in a specific

direction

• Controller
o Aware of model’s current direction

o Triggers methods to notify model that state should change

Traffic Signal Code
• Model

o TrafficModel – keeps track of which lights should be on and off

• View
o CarLight – shows relevant state of TrafficModel to cars

o PedestrianLight – shows relevant state of TrafficModel to

pedestrians

• Controller
o PedestrianButton – notifies TrafficModel that there is a pedestrian

waiting

o CarDetector – notifies TrafficModel that there is a car waiting

o LightSwitch – enables or disables the light

o Timer – regulates time in some way, possibly to skip cycles

HW8 Overview
• Apply your generic graph & Dijkstra’s to campus

map data

• Given a list of buildings and walking paths

• Produce routes from one building to another on the

walking paths

HW8 Data Format
• List of buildings (abbreviation, name, loc in pixels)

 BAG Bagley Hall (East Entrance) 1914.5103,1708.8816

 BGR By George 1671.5499,1258.4333

• List of paths (endpoint 1, endpoint 2, dist in feet)
 1903.7201,1952.4322

 1906.1864,1939.0633: 26.583482327919597

 1897.9472,1960.0194: 20.597253035175832

 1915.7143,1956.5: 26.68364745009741

 2337.0143,806.8278

 2346.3446,817.55768: 29.685363221542797

 2321.6193,788.16714: 49.5110360968527

 2316.4876,813.59229: 44.65826043418031

• (0,0) is in the upper left

MVC in HW8
• Model stores graph, performs Dijkstra’s

• View shows results to users in text format

• Controller takes user commands and uses view to

show results

• View and Controller will change in HW9, but Model

will stay the same

