WHAT SITUATIONS
MIGHT T PREPARE RR7
1) MEDICAL EMERGENCY

2) DANCING

[JF0DTOOBPENSVE

o
o

OKAY, WHAT KINDS OF
EMERGENCIES (AN HAPPEN?
1) A) SNAKEBITE

B) LIGHTNING STRIKE

L O PLLRM AR

@)
0

A

IFaTaass T b
o v ke P
DANGERDUS? LETS SEE...

)A)a) (ORN SNAKE
b) GARTER SNAKE. 7

e

%

THE RESEARCH COMPRRING
SNRKE VENOMS 1S SCATTERED
AND INCONSKSTENT. TLL MAKE
A PREADSHEET T ORGRNIZE IT.

O

O

\

S

TMHEREPKK. BY Dy, THE. INIAND
YOUUR. YoURE TAIPAN HAS THE DESDLIEST
NOT DRESSED?

VENOM OF AN SNAKE.!
J

T REAUY NEED To STop

USING DEPTH-FIRST SEARCHES.

Section 7:
Dijkstra’s

Slides by Alex Mariakakis

with material Kellen Donohue, David
Mailhot, and Dan Grossman

Things to Discuss

« Late days
o cseddl-lateday@cs.washington.edu
o 3 assignments left
o Can use 2 late days max per assignment

« Midterm

o Loop invariant question

mailto:cse331-lateday@cs.washington.edu
mailto:cse331-lateday@cs.washington.edu
mailto:cse331-lateday@cs.washington.edu

Homework 7

Modify your graph to use generics
o Willhave to update HW #5 and HW #6 tests

Implement Dijkstra’s algorithm
o Search algorithm that accounts for edge weights
o Note: This should not change your implementation of Graph.
Dijkstra’s is performed on a Graph, not within a Graph.
The more well-connected two characters are, the lower
the weight and the more likely that a path is taken
through them

o The weight of an edge is equal to the inverse of how many
comic books the two characters share

o EXx:If Amazing Amoeba and Zany Zebra appeared in 5 comic
books together, the weight of their edge would be 1/5

Review: Shortest Paths with BFS

From Node B

Destination Path Cost

B 0

D <B,D> 1

Shortest Paths with Weights

From Node B

Destination Path Cost

B 0

D <B,A,C,D> 7

Paths are not the same!

BES vs. Dijkstra’s

100 100

500

BFS doesn’t work because path with minimal cost #
path with fewest edges

Dijkstra’s works if the weights are non-negative

What happens if there is a negative edge?
o Minimize cost by repeating the cycle forever

Dijkstra’s Algorithm

« Named after its inventor Edsger Dijkstra (1930-2002)

o Truly one of the “founders” of computer science;
this is just one of his many contributions

* The idea: reminiscent of BFS, but adapted to handle
weights
o Grow the set of nodes whose shortest distance has been
computed
o Nodes not in the set will have a “best distance so far”

o A priority queue will turn out to be useful for efficiency

Dijkstra’s Algorithm

For each node v, set v.cost = « and v.known =
false

Set source.cost = 0

While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost

b) Mark v as known
c) Foreach edge (v, u) with weight w,

cl = v.cost + w // cost of best path through v to u

c2 = u.cost // cost of best path to u previously known

if(cl < c2) // if the new path through v is better, update
u.cost = cl

u.path = v

Order Added to Known Set:

vertex

known?

path

A

T(O|IM(MOT|O|T

Order Added to Known Set:

vertex | known? cost path
A Y 0
<2 A
<1 A
<4 A

A

T(O|IM(MOT|O|T

Order Added to Known Set:

vertex | known? cost path
A Y 0
<2 A
Y 1 A
<4 A

A, C

T(O|IM(MOT|O|T

Order Added to Known Set:

A, C

vertex | known? cost path
A Y 0
<2 A
Y 1 A
<4 A
<12 C

T(O|IM(MOT|O|T

Order Added to Known Set:

A CB

vertex | known? cost path
A Y 0
Y 2 A
Y 1 A
<4 A
<12 C

T(O|IM(MOT|O|T

Order Added to Known Set:

A CB

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D <4 A
E <12 C
F <4 B
G

H

vertex | known? cost path

A Y 0

B Y 2 A

C Y 1 A
Order Added to Known Set: = M 4 &

E <12 C
A C B,D F <4 B

G

H

Order Added to Known Set:

A CB,D,F

vertex | known? cost path

A Y 0

B Y 2 A
C Y A
D Y 4 A
E <12 C
F Y 4 B
G

H

vertex | known? cost path

A Y 0

<<=

Order Added to Known Set:

IN
®O(>(>|>

A CB,D,F

T(O|IM(MOT|O|T
IN
Mo

IA
N
T

Order Added to Known Set:

A CB,D,F H

vertex | known? cost path

A Y 0

B Y 2 A
C Y A
D Y 4 A
E <12 C
F Y 4 B
G 00

H Y 7 F

vertex | known? cost path

A Y 0

<<=

Order Added to Known Set:

A CB,D,F H

T(O|IM(MOT|O|T
IN
—_ -
N
M|IT|W|(O(>|I>|>

Order Added to Known Set:

A CB,DF HG

vertex | known? cost path

A Y 0

B Y 2 A
C Y A
D Y 4 A
E <12 C
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

A CB,DF HG

vertex | known? cost path

A Y 0

B Y 2 A
C Y A
D Y 4 A
E <11 G
F Y 4 B
G Y 8 H
H Y 7 F

vertex | known? cost path

A Y 0

Order Added to Known Set:

A CB,DFHG,E

T OQMmMT|O|T
<|<|=<|=<|=<|=<]|=<
=
M I W O|(>|>|>

vertex

known?

Interpretmg the Results

cost

path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y H
H Y 7 F

Order Added to Known Set:

vertex | known? cost path
A Y 0
B %)
C o0
D 00
E %)
F 0
G 00

Order Added to Known Set:

A D,CEMBFG

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

Pseudocode Attempt #1

dijkstra (Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0]. oIv)
while (not all nodes are known) {
b = dequeue o(|V]?)
b.known = true
for each edge (b,a) in G {
if (!'a.known) {
1f(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight ((b,a))
a.path = b

O(lEl)

} o(|V]?)
brackets..

Can We Do Better?

* |Increase efficiency by considering lowest cost
unknown vertex with sorting instead of looking at all
vertices

* PriorityQueue is like a queue, but returns elements
by lowest value instead of FIFO

Priority Queue

* |Increase efficiency by considering lowest cost
unknown vertex with sorting instead of looking at all

vertices

* PriorityQueue is like a queue, but returns elements
by lowest value instead of FIFO

« Two ways to implement:
1. Comparable
a) class Node implements Comparable<Node>
b) publicint compareTo(other)
2. Comparator
a) class NodeComparator extends Comparator<Node>
b) new PriorityQueue(new NodeComparator())

Pseudocode Attempt #2

dijkstra (Graph G, Node start) {
for each node:

X.cost=infinity,

start.cost = 0
build-heap with all nodes
while (heap is not empty) ({

b = deleteMin ()
if (b.known) continue;
b.known = true

for each edge (b,a) in G {
if(!'a.known) {
add (b.cost + weight ((b,a))
}

brackets..

x.known=false o(|V])

O(|V]log|V])

O(|E[log|V])

)

O(|E[log|V])

Proof of Correctness

« All the "known' vertices have the correct shortest
path through induction
o Initially, shortest path to start node has cost O
o If it stays true every time we mark a node “known", then by
induction this holds and eventually everything is “known”
with shortes path
« Key fact: When we mark a vertex “known” we
won't discover a shorter path later

o Remember, we pick the node with the min cost each
round

o Once a node is marked as “known”, going through
another path will only add weight

o Only true when node weights are positive

