

Slides by Alex Mariakakis

with material from Hal Perkins

Section 10:
Design Patterns 2

List of Design Patterns
We discussed several patterns during the quarter. For reference, here is a list

of some of them:

• Creational: Factory, Singleton, Builder, Prototype, Interning, Flyweight

• Structural: Adapter, Composite, Decorator, Flyweight, Proxy

• Behavioral: Interpreter, Observer, Iterator, Strategy, MVC, Visitor

Winter 2012 Q9a
Your program can send content to a printer. You want to ensure that

different parts of the program don’t command the printer to print output
belonging to multiple documents simultaneously, mixed together.

Singleton – ensure that all threads use the same print manager/queue.

We allowed Proxy as an answer if a good explanation was supplied,
although most answers were arguing for using a Proxy to implement
Singleton.

Winter 2012 Q9b
You are writing a library that allows client code to read and write

compressed data for storing in files. You’ve written several classes that
implement encode() and decode() methods of a CompressedFile interface.
These classes use different algorithms with different characteristics. Rather
than requiring the client to choose among them, you want the client to be
able to simply to request a CompressedFile object and be given an instance

of the best available implementation for the particular kind of file.

 Factory – If the client were to call a constructor directly, he/she would need
to know what implementation of CompressedFile he/she wants to use.
Instead, what we want is a way for the client to ask for a CompressedFile

without knowing what concrete class to use. In other words, we want a static
factory method like getCompressedFile() that contains all the logic for
deciding what class to construct.

Some people answered Strategy, which we accepted even though it’s not

quite correct. Because we didn’t describe this pattern in much detail we
didn’t expect people to know the subtle distinctions between Strategy and
factory.

Winter 2012 Q9c
You have an application that reads and writes files on the local file system.

Without changing the existing application any more than absolutely
necessary you would like to modify it so it can read and write files stored at a
different location on the network, even though reading and writing data
over the network requires using a different API and a different set of methods
than reading and writing data stored in local files.

Adapter – create a wrapper class whose API matches what the application
already expects for reading/writing locally. The methods in the adapter use
the API to read and write data over the network.

We gave partial credit for Proxy. That would be the correct answer if the local
object were simply acting as a stand-in for a remote service using the same
protocol. But here the object is translating from one API to another, so
Adapter is the actual pattern being used.

Decorator was not a correct answer here. That pattern wraps a basic
abstraction with an augmented version, rather than translating from one
abstraction to another.

Winter 2012 Q9d
You are writing a program that maintains a grid of objects. Although there

are several million objects in the grid, there are only a few hundred distinct
objects, but there are many copies of each one. Unfortunately each of the
objects require a fair amount of storage and creating several million
individual objects is using way too much storage.

Interning – create one each of the several hundred distinct objects. When
the client requests a new object, give them a reference to the existing

object of the same value (or for a lazy implementation, create the object the
first time it is requested).

Fall 2012 Q12
a) You have a set of objects that is unlikely to change, but the set of

operations on them is likely to change. You want to keep the code for each
operation together in a single module.

b) You have a class with many optional parameters, and want to avoid
creating a large number of constructors.

c) You have a Point class whose interface uses polar coordinates and you
want to provide a wrapper so it can be used to implement a version of Point
that uses rectangular coordinates.

Visitor/Procedural

Builder (partial credit for Factory)

Adapter

Fall 2012 Q12
d) You want to wrap a library class that manages data connections so that it

logs connection attempts as they occur.

e) You want to save memory costs of creating many duplicate objects of a
class which has only a few distinct abstract values.

f) When new objects of your class are created the new objects should
actually have a more appropriate subtype.

Decorator (partial credit for Proxy)

Interning (partial credit for Factory, Flyweight)

Factory

Fall 2012 Q8
More generic questions. Suppose we have the following classes defined:

class Shape { … }

class Circle extends Shape { … }

class Rectangle extends Shape { … }

Now suppose we have a program that contains the following objects and
list:

Object o;

Shape s;

Circle c;

Rectangle r;

Fall 2012 Q8
List<? extends Shape> les;

les.add(s);

les.add(c);

c = les.get(0);

s = les.get(0);

o = les.get(0);

legal illegal

List<? super Shape> lss;

lss.add(s);

lss.add(c);

c = lss.get(0);

s = lss.get(0);

o = lss.get(0);

legal illegal

X

X

X

X

X

X

X

X

X

X

Fall 2013 Q2
/** A tic-tac-toe game */

public class TicTacToe {

 // instance variables omitted

 /** Initialize a new game object */

 public TicTacToe() { }

 /** Print the state of the game board on System.out */

 public void printGame() { }

 /** Read the player's next move from the keyboard

 * and update the game to reflect that move. */

 public void getPlayerMove() { }

 /** Calculate the computer's next move and print it on

 * System.out */

 public void computerMove() { }

 /** Calculate the computer and user's current scores

 * and print them on System.out */

 public void printScores() { }

 /** Reset the game back to the same initial state it had

 * when it was created */

 public void resetGame() { }

}

Fall 2013 Q2
What is (are) the major design flaw(s) in the above design? A brief couple of

sentences should be enough to get the point across.

The major design flaw is that the game logic and user interface have been
jumbled together in a single class. These need to be separated, particularly
if we ever hope to be able to replace the user interface with a different one

without a major rewrite.

Fall 2013 Q2
Describe how you would refactor (change) the initial design to improve it.

Briefly sketch the class(es) and methods in your design, and what each of
them do. You do not need to provide very much detail, but there should be
enough so we can tell how you’ve rearranged the design, what the major
pieces are, and how they interact.

The important thing that the application should be split using the MVC
pattern to separate the game logic from the interface

Model: game logic. Operations would include the following from the
original code:

• Create a new game model

• Record a new player move

• Calculate a new move for the computer

• Return the current user and computer scores to the caller

• Return the current state of the game board to the caller

• Reset the game board to start a new game

Fall 2013 Q2
Describe how you would refactor (change) the initial design to improve it.

Briefly sketch the class(es) and methods in your design, and what each of
them do. You do not need to provide very much detail, but there should be
enough so we can tell how you’ve rearranged the design, what the major
pieces are, and how they interact.

Viewer/Controller (likely a single module in a console text-based game):

• Process initialize and reset commands from the user

• Read player moves and call the model to update the game state

• Display computer moves

• Display current contents of the game board and current scores

The viewer/controller and the model would likely use some form of the
Observer pattern to communicate.

Fall 2013 Q3
We would like to modify this code to change it into a generic method that

works with any sorted array whose elements have type Comparable<T> (i.e.,
the elements can be ordered using the compareTo method). Mark the code
above to show the changes needed to turn this into a generic method.

/** Search a sorted array of integers for a given value

 * @param a Array to be searched

 * @param x Value to search for in array a

 * @return If x is found in a, return largest i such

 * that a[i]==x. Return -1 if x not found in a

 * @requires a!=null & a is sorted in non-decreasing

 * order (i.e., a[0]<=a[1]<=...<=a[a.length-1])

 */

Fall 2013 Q3
public static int bsearch(int[] a, int x) {

 int L = -1;

 int R = a.length;

 // inv: a[0..L] <= x && a[R..a.length-1] > x &&

 // a[L+1..R-1] not examined

 while (L+1 != R) {

 int mid = (L+R)/2;

 if (a[mid] <= x)

 L = mid;

 else // a[mid] > x

 R = mid;

 }

 if (L >= 0 && a[L] == x)

 return L;

 else

 return -1;

 }

Fall 2013 Q3
public static <T extends Comparable<T>> int bsearch(T[] a, T x) {

 int L = -1;

 int R = a.length;

 // inv: a[0..L] <= x && a[R..a.length-1] > x &&

 // a[L+1..R-1] not examined

 while (L+1 != R) {

 int mid = (L+R)/2;

 if (a[mid].compareTo(x) <= 0)

 L = mid;

 else // a[mid] > x

 R = mid;

 }

 if (L >= 0 && a[L].compareTo(x) == 0)

 return L;

 else

 return -1;

 }

Fall 2013 Q3
/** Search a sorted array of integers for a given value

 * @param a Array to be searched

 * @param x Value to search for in array a

 * @return If x is found in a, return largest i such

 * that a[i]==x. Return -1 if x not found in a

 * @requires a!=null & a is sorted in non-decreasing

 * order (i.e., a[0]<=a[1]<=...<=a[a.length-1])

 */

Fall 2013 Q4
There’s something fishy about this question. Suppose we have the following

class hierarchy:

class Creature extends Object { }

class Fish extends Creature {

 /** Return the weight of this Fish */

 public float getWeight() { return ...; }

}

class Salmon extends Fish { }

class Haddock extends Fish { }

class Tuna extends Fish { }

Class Creature does not have a getWeight method. Class Fish

implements that method and all of its subclasses inherit it.

Fall 2013 Q4
Write a static method collectionWeight whose parameter can be any

Java Collection containing Fish objects (including objects of any Fish

subclass(es)). Method collectionWeight should return the total weight of

all the Fish in the Collection, using getWeight to determine the weight of

each individual Fish.

Hints: Method collectionWeight will need a proper generic type for its

parameter. Java Collections are things like Lists and Sets that

implement the Iterable interface. They do not include things like Maps,

which are not simple collections of objects.

Fall 2013 Q4
Using wildcards:

public static float collectionWeight(Collection<? extends Fish> f) {

 float totalWeight = 0;

 for (Fish fish: f)

 totalWeight += fish.getWeight();

 return totalWeight;

}

Or without wildcards:

public static <T extends Fish> float collectionWeight(Collection<T> f)

WRAP UP

