
CSE 331
Software Design & Implementation

Hal Perkins
Spring 2014

Events, Listeners, and Callbacks

The limits of scaling

What prevents us from building huge,
intricate structures that work perfectly and
indefinitely?

–  No friction
–  No gravity
–  No wear-and-tear

… it’s the difficulty of understanding them

So we split designs into sensible parts and
reduce interaction among the parts

–  More cohesion within parts
–  Less coupling across parts

CSE331 Spring 2014 2

Design exercise #1

Write a typing-break reminder program
Offer the hard-working user occasional reminders of the perils of
Repetitive Strain Injury, and encourage the user to take a break
from typing.

Naive design:

–  Make a method to display messages and offer exercises
–  Make a loop to call that method from time to time

(Let's ignore multi-threaded solutions for this discussion)

3 CSE331 Spring 2014

TimeToStretch suggests exercises

public class TimeToStretch {

 public void run() {

 System.out.println("Stop typing!");

 suggestExercise();

 }

 public void suggestExercise() {

 …

 }

}

4 CSE331 Spring 2014

Timer calls run() periodically

public class Timer {

 private TimeToStretch tts = new TimeToStretch();

 public void start() {

 while (true) {

 ...

 if (enoughTimeHasPassed) {

 tts.run();

 }

 ...

 }
 }

}

5 CSE331 Spring 2014

Main class puts it together

class Main {
 public static void main(String[] args) {
 Timer t = new Timer();

 t.start();

 }

}

This program, as designed, will work...

 But we can do better

6 CSE331 Spring 2014

Module dependency diagram (MDD)

 An arrow in a module dependency diagram (MDD) indicates
“depends on” or “knows about”
–  Simplistically: “any name mentioned in the source code”

What’s wrong with this diagram?

–  Does Timer really need to depend on TimeToStretch?
–  Is Timer re-usable in a new context?

7

TimeToStretch

Timer

Main

Timer depends
on TimeToStretch

Main depends on Timer

CSE331 Spring 2014

Decoupling

Timer needs to call the run method
–  Timer does not need to know what the run method does

Weaken the dependency of Timer on TimeToStretch
–  Introduce a weaker specification, in the form of an interface or

abstract class

 public abstract class TimerTask {

 public abstract void run();

 }

Timer only needs to know that something (e.g., TimeToStretch)
meets the TimerTask specification

8 CSE331 Spring 2014

TimeToStretch (version 2)

public class TimeToStretch extends TimerTask {

 public void run() {

 System.out.println("Stop typing!");

 suggestExercise();

 }

 public void suggestExercise() {

 ...

 }

}

9 CSE331 Spring 2014

Timer (version 2)

public class Timer {
 private TimerTask task;
 public Timer(TimerTask task) {
 this.task = task;
 }
 public void start() {
 while (true) {
 ...
 task.run();
 }
 }
}

Main creates a TimeToStretch object and passes it to Timer:
 Timer t = new Timer(new TimeToStretch());

 t.start();

 10 CSE331 Spring 2014

Module dependency diagram (version 2)

•  Timer depends on TimerTask, not TimeToStretch
–  Unaffected by implementation details of TimeToStretch
–  Now Timer is much easier to reuse
–  Main depends on the constructor for TimeToStretch

•  Main still depends on Timer (is this necessary?)

TimeToStretch

Timer

Main

TimerTask

Subclassing
Dependence

11 CSE331 Spring 2014

The callback design pattern

TimeToStretch creates a Timer, and passes in a reference to itself
so the Timer can call it back

–  This is a callback – a method call from a module to a client that
it notifies about some condition

Use a callback to invert a dependency

–  Inverted dependency: TimeToStretch depends on Timer
(not vice versa)

•  Less obvious coding style, but more “natural” dependency
–  Side benefit: Main does not depend on Timer

12 CSE331 Spring 2014

Callbacks

Callback: “Code” provided by client to be used by library
•  In Java, pass an object with the “code” in a method

Synchronous callbacks:
•  Examples: HashMap calls its client’s hashCode, equals
•  Useful when library needs the callback result immediately

Asynchronous callbacks:
•  Examples: GUI listeners
•  Register to indicate interest and where to call back
•  Useful when the callback should be performed later, when

some interesting event occurs

13 CSE331 Spring 2014

TimeToStretch (version 3)

public class TimeToStretch extends TimerTask {
 private Timer timer;
 public TimeToStretch() {
 timer = new Timer(this);
 }
 public void start() {
 timer.start();
 }
 public void run() {
 System.out.println("Stop typing!");
 suggestExercise();
 }
 ...
}

Register interest
with the timer

Callback entry point

14 CSE331 Spring 2014

Main (version 3)

 TimeToStretch tts = new TimeToStretch();

 tts.start();
–  Uses a callback in TimeToStretch to invert a dependency
–  This MDD shows the inversion of the dependency between
Timer and TimeToStretch (compare to version 1)

TimeToStretch

Timer

Main

TimerTask

Main does not depend on Timer
TimeToStretch depends on Timer

15 CSE331 Spring 2014

Decoupling and design

•  A good design has dependences (coupling) only where it makes
sense

•  While you design (before you code), examine dependences

•  Don’t introduce unnecessary coupling

•  Coupling is an easy temptation if you code first
–  Suppose a method needs information from another object:
–  If you hack in a way to get it:

•  The hack might be easy to write
•  It will damage the code’s modularity and reusability
•  More complex code is harder to understand

16 CSE331 Spring 2014

Design exercise #2

A program to display information about stocks
–  Stock tickers
–  Spreadsheets
–  Graphs

Naive design:

–  Make a class to represent stock information
–  That class updates all views of that information (tickers,

graphs, etc.) when it changes

17 CSE331 Spring 2014

•  Main class gathers information and stores in Stocks
•  Stocks class updates viewers when necessary

Problem: To add/change a viewer, must change Stocks
Better: insulate Stocks from the vagaries of the viewers

Stocks

StockGraph

StockTicker

Spreadsheet

Main

Module dependency diagram

18 CSE331 Spring 2014

Weaken the coupling

What should Stocks class know about viewers?
–  Only needs an update method to call with changed data
–  Old way:

void updateViewers() {
 ticker.update(newPrice);
 spreadsheet.update(newPrice);
 graph.update(newPrice);
 // Edit this method to
 // add a new viewer. L
}

CSE331 Spring 2014 19

Weaken the coupling
What should Stocks class know about viewers?

–  Only needs an update method to call with changed data
–  New way: The “observer pattern”

CSE331 Spring 2014 20

interface PriceObserver {
 void update(PriceInfo pi);
}

class Stocks {
 private List<PriceObserver> observers;
 void addObserver(PriceObserver pi) {
 observers.add(pi);
 }
 void notifyObserver(PriceInfo i) {
 for (PriceObserver obs : observers)
 obs.update(i);
 }
 …
} Do the callbacks

Register a
callback

Create (or be)
observers

Create Stocks and
add observers

The observer pattern

•  Stocks not responsible for viewer creation
•  Main passes viewers to Stocks as observers
•  Stocks keeps list of PriceObservers, notifies them of changes

•  Issue: update method must pass enough information to
(unknown) viewers

Stocks

StockGraph

Spreadsheet

Main

StockTicker

PriceObserver

Create viewers and get observers

21 CSE331 Spring 2014

A different design: pull versus push
•  The Observer pattern implements push functionality
•  A pull model: give viewers access to Stocks, let them extract the

data they need

“Push” versus “pull” efficiency can depend on frequency of operations

(Also possible to use both patterns simultaneously.)

Stocks

StockGraph

Spreadsheet

Main

Stocks.new

StockTicker

new(Stocks)

22 CSE331 Spring 2014

Another example of Observer pattern

// Represents a sign-up sheet of students
public class SignupSheet extends Observable {
 private List<String> students
 = new ArrayList<String>();
 public void addStudent(String student) {
 students.add(student);
 setChanged();
 notifyObservers();
 }
 public int size() {
 return students.size();
 }
 …
}

Part of the
JDK

23 CSE331 Spring 2014

SignupSheet inherits many methods including:
void addObserver(Observer o)
protected void setChanged()
void notifyObservers()

An Observer

public class SignupObserver implements Observer {
 // called whenever observed object changes
 // and observers are notified
 public void update(Observable o, Object arg) {
 System.out.println("Signup count: "
 + ((SignupSheet)o).size());
 }
}

Part of the JDK

Not relevant to us

cast because
Observable is
non-generic L

24 CSE331 Spring 2014

Registering an observer

 SignupSheet s = new SignupSheet();
 s.addStudent("billg");

 // nothing visible happens

 s.addObserver(new SignupObserver());

 s.addStudent("torvalds");

 // now text appears: "Signup count: 2"

Java's “Listeners” (particularly in GUI classes) are examples of the
Observer pattern

(Feel free to use the Java observer classes in your designs – if
they are a good fit – but you don’t have to use them)

25 CSE331 Spring 2014

User interfaces: appearance vs. content

It is easy to tangle up appearance and content
–  Particularly when supporting direct manipulation (e.g., dragging

line endpoints in a drawing program)
–  Another example: program state stored in widgets in dialog

boxes

Neither can be understood easily or changed easily

This destroys modularity and reusability

–  Over time, it leads to bizarre hacks and huge complexity
–  Code must be discarded

Callbacks, listeners, and other patterns can help

26 CSE331 Spring 2014

