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Events, Listeners, and Callbacks 



The limits of scaling 

What prevents us from building huge, 
intricate structures that work perfectly and 
indefinitely?  

–  No friction 
–  No gravity 
–  No wear-and-tear 

… it’s the difficulty of understanding them 
 
So we split designs into sensible parts and 
reduce interaction among the parts  

–  More cohesion within parts 
–  Less coupling across parts 
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Design exercise #1 

Write a typing-break reminder program 
Offer the hard-working user occasional reminders of the perils of 
Repetitive Strain Injury, and encourage the user to take a break 
from typing. 

 
Naive design: 

–  Make a method to display messages and offer exercises 
–  Make a loop to call that method from time to time 

  
(Let's ignore multi-threaded solutions for this discussion) 
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TimeToStretch suggests exercises 

public class TimeToStretch { 

    public void run() { 

        System.out.println("Stop typing!"); 

        suggestExercise(); 

    } 

    public void suggestExercise() { 

     … 

    } 

} 
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Timer calls run() periodically 

public class Timer { 

  private TimeToStretch tts = new TimeToStretch(); 

  public void start() { 

    while (true) { 

      ... 

      if (enoughTimeHasPassed) { 

        tts.run(); 

      } 

      ... 

    } 
  } 

} 
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Main class puts it together 

class Main { 
  public static void main(String[] args) { 
    Timer t = new Timer(); 

    t.start(); 

  } 

} 
 
This program, as designed, will work... 

 But we can do better 
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Module dependency diagram (MDD) 

 An arrow in a module dependency diagram (MDD) indicates 
“depends on” or “knows about”  
–  Simplistically: “any name mentioned in the source code” 

 
 
 
 
 
 
 
What’s wrong with this diagram? 

–  Does Timer really need to depend on TimeToStretch? 
–  Is Timer re-usable in a new context? 
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Decoupling 

Timer needs to call the run method 
–  Timer does not need to know what the run method does 

 

Weaken the dependency of Timer on TimeToStretch 
–  Introduce a weaker specification, in the form of an interface or 

abstract class 
 

 public abstract class TimerTask { 

     public abstract void run(); 

 } 
 

Timer only needs to know that something (e.g., TimeToStretch) 
meets the TimerTask specification 
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TimeToStretch (version 2) 

public class TimeToStretch extends TimerTask { 

    public void run() { 

        System.out.println("Stop typing!"); 

        suggestExercise(); 

    } 

 

    public void suggestExercise() { 

         ... 

    } 

} 
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Timer (version 2) 

public class Timer { 
  private TimerTask task; 
  public Timer(TimerTask task) {  
     this.task = task;  
  } 
  public void start() { 
    while (true) { 
      ... 
      task.run(); 
    } 
  } 
} 
 

Main creates a TimeToStretch object and passes it to Timer: 
    Timer t = new Timer(new TimeToStretch()); 

    t.start(); 
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Module dependency diagram (version 2) 

•  Timer depends on TimerTask, not TimeToStretch  
–  Unaffected by implementation details of TimeToStretch 
–  Now Timer is much easier to reuse 
–  Main depends on the constructor for TimeToStretch 

•  Main still depends on Timer (is this necessary?) 
 

TimeToStretch 

Timer 

Main 

TimerTask 

Subclassing 
Dependence 
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The callback design pattern 

TimeToStretch creates a Timer, and passes in a reference to itself 
so the Timer can call it back 

–  This is a callback – a method call from a module to a client that 
it notifies about some condition 

 
Use a callback to invert a dependency 

–  Inverted dependency:  TimeToStretch depends on Timer 
(not vice versa) 

•  Less obvious coding style, but more “natural” dependency 
–  Side benefit:  Main does not depend on Timer 
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Callbacks 

Callback:  “Code” provided by client to be used by library 
•  In Java, pass an object with the “code” in a method 

 

Synchronous callbacks: 
•  Examples:  HashMap calls its client’s hashCode, equals 
•  Useful when library needs the callback result immediately 

 

Asynchronous callbacks: 
•  Examples:  GUI listeners 
•  Register to indicate interest and where to call back 
•  Useful when the callback should be performed later, when 

some interesting event occurs 
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TimeToStretch (version 3) 

public class TimeToStretch extends TimerTask { 
    private Timer timer; 
    public TimeToStretch() { 
        timer = new Timer(this); 
    } 
    public void start() { 
        timer.start(); 
    } 
    public void run() { 
        System.out.println("Stop typing!"); 
        suggestExercise(); 
    } 
    ... 
} 

Register interest 
with the timer 

Callback entry point 
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Main (version 3) 

  TimeToStretch tts = new TimeToStretch(); 

  tts.start(); 
–  Uses a callback in TimeToStretch to invert a dependency 
–  This MDD shows the inversion of the dependency between 
Timer and TimeToStretch (compare to version 1) 

TimeToStretch 

Timer 

Main 

TimerTask 

Main does not depend on Timer 
TimeToStretch depends on Timer 
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Decoupling and design 

•  A good design has dependences (coupling) only where it makes 
sense 

•  While you design (before you code), examine dependences 

•  Don’t introduce unnecessary coupling 

•  Coupling is an easy temptation if you code first 
–  Suppose a method needs information from another object: 
–  If you hack in a way to get it: 

•  The hack might be easy to write 
•  It will damage the code’s modularity and reusability 
•  More complex code is harder to understand 
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Design exercise #2 

A program to display information about stocks 
–  Stock tickers 
–  Spreadsheets 
–  Graphs 

 
Naive design: 

–  Make a class to represent stock information 
–  That class updates all views of that information (tickers, 

graphs, etc.) when it changes 
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•  Main class gathers information and stores in Stocks 
•  Stocks class updates viewers when necessary 
 
 
 
 
 
 
 
 
Problem: To add/change a viewer, must change Stocks 
Better: insulate Stocks from the vagaries of the viewers 

Stocks 

StockGraph 

StockTicker 

Spreadsheet 

Main 

Module dependency diagram 
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Weaken the coupling 

What should Stocks class know about viewers? 
–  Only needs an update method to call with changed data 
–  Old way: 

void updateViewers() { 
  ticker.update(newPrice); 
  spreadsheet.update(newPrice); 
  graph.update(newPrice); 
  // Edit this method to  
  // add a new viewer. L 
} 
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Weaken the coupling 
What should Stocks class know about viewers? 

–  Only needs an update method to call with changed data 
–  New way: The “observer pattern” 
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interface PriceObserver { 
  void update(PriceInfo pi); 
} 
 
class Stocks { 
  private List<PriceObserver> observers; 
  void addObserver(PriceObserver pi) { 
    observers.add(pi); 
  } 
  void notifyObserver(PriceInfo i) { 
    for (PriceObserver obs : observers) 
      obs.update(i); 
  } 
  … 
} Do the callbacks 

Register a  
callback 



Create (or be) 
observers 

Create Stocks and 
add observers 

The observer pattern 

•  Stocks not responsible for viewer creation 
•  Main passes viewers to Stocks as observers 
•  Stocks keeps list of PriceObservers, notifies them of changes 

•  Issue: update method must pass enough information to 
(unknown) viewers 

Stocks 

StockGraph 

Spreadsheet 

Main 

StockTicker 

PriceObserver 

Create viewers and get observers 
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A different design:  pull versus push 
•  The Observer pattern implements push functionality 
•  A pull model:  give viewers access to Stocks, let them extract the 

data they need 
 
 
 
 
 
 
 
 
 
“Push” versus “pull” efficiency can depend on frequency of operations 

(Also possible to use both patterns simultaneously.) 

Stocks 
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Spreadsheet 
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Another example of Observer pattern 

// Represents a sign-up sheet of students 
public class SignupSheet extends Observable { 
  private List<String> students 
        = new ArrayList<String>(); 
  public void addStudent(String student) { 
    students.add(student); 
    setChanged(); 
    notifyObservers(); 
  } 
  public int size() { 
    return students.size(); 
  } 
  … 
} 
 

Part of the 
JDK 
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SignupSheet inherits many methods including: 
void addObserver(Observer o) 
protected void setChanged() 
void notifyObservers()  



An Observer 

public class SignupObserver implements Observer { 
  // called whenever observed object changes  
  // and observers are notified 
  public void update(Observable o, Object arg) { 
    System.out.println("Signup count: "     
                       + ((SignupSheet)o).size()); 
  } 
} 

Part of the JDK 

Not relevant to us 

cast because 
Observable is 
non-generic L 
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Registering an observer 

        SignupSheet s = new SignupSheet(); 
    s.addStudent("billg"); 

    // nothing visible happens 

    s.addObserver(new SignupObserver()); 

    s.addStudent("torvalds"); 

    // now text appears:  "Signup count: 2" 
 
Java's “Listeners” (particularly in GUI classes) are examples of the 
Observer pattern 
 
(Feel free to use the Java observer classes in your designs – if 
they are a good fit – but you don’t have to use them) 
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User interfaces:  appearance vs. content 

It is easy to tangle up appearance and content 
–  Particularly when supporting direct manipulation (e.g., dragging 

line endpoints in a drawing program) 
–  Another example:  program state stored in widgets in dialog 

boxes 
 
Neither can be understood easily or changed easily 
 
This destroys modularity and reusability 

–  Over time, it leads to bizarre hacks and huge complexity 
–  Code must be discarded 
 

Callbacks, listeners, and other patterns can help 
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