
CSE 331
Software Design & Implementation

Hal Perkins
Spring 2014

Testing

Outline

•  Why correct software matters
–  Motivates testing and more than testing, but now seems like

a fine time for the discussion

•  Testing principles and strategies

–  Purpose of testing

–  Kinds of testing

–  Heuristics for good test suites

–  Black-box testing

–  Clear-box testing and coverage metrics

–  Regression testing

2 CSE331 Spring 2014

Non-outline

•  Modern development ecosystems have much built-in support for
testing
–  Unit-testing frameworks like JUnit
–  Regression-testing frameworks connected to builds and

version control
–  Continuous testing
–  …

•  No tool details covered here
–  See homework, section, internships, …

CSE331 Spring 2014 3

Rocket self-destructed 37 seconds after launch
–  Cost: over $1 billion

Reason: Undetected bug in control software
–  Conversion from 64-bit floating point to 16-bit signed integer

caused an exception
–  The floating point number was larger than 32767
–  Efficiency considerations led to the disabling of the exception

handler, so program crashed, so rocket crashed

Ariane 5 rocket (1996)

4 CSE331 Spring 2014

Therac-25 radiation therapy machine

Excessive radiation killed patients (1985-87)

–  New design removed hardware prevents the electron-beam
from operating in its high-energy mode. Now safety checks
done in software.

–  Equipment control task did not properly synchronize with the
operator interface task, so race conditions occurred if the
operator changed the setup too quickly.

–  Missed during testing
because it took practice before
operators worked quickly enough

 for the problem to occur.

CSE331 Spring 2014

Legs deployed à Sensor signal falsely indicated that the craft had
touched down (130 feet above the surface)
Then the descent engines shut down prematurely

Error later traced to a single bad line of software code

Why didn’t they blame the sensor?

Mars Polar Lander

6 CSE331 Spring 2014

More examples

•  Mariner I space probe (1962)
•  Microsoft Zune New Year’s Eve crash (2008)
•  iPhone alarm (2011)
•  Denver Airport baggage-handling system (1994)
•  Air-Traffic Control System in LA Airport (2004)
•  AT&T network outage (1990)
•  Northeast blackout (2003)
•  USS Yorktown Incapacitated (1997)
•  Intel Pentium floating point divide (1993)
•  Excel: 65,535 displays as 100,000 (2007)
•  Prius brakes and engine stalling (2005)
•  Soviet gas pipeline (1982)
•  Study linking national debt to slow growth (2010)
•  …

CSE331 Spring 2014 7

Costs to society as of 2002

•  Inadequate infrastructure for software testing costs the U.S.
$22-$60 billion per year

•  Testing accounts for about half of software development costs
–  Program understanding and debugging account for up to

70% of time to ship a software product

•  Improvements in software testing infrastructure might save 1/3
of the cost

(Source: NIST Planning Report 02-3, 2002)

8 CSE331 Spring 2014

Building Quality Software
What Affects Software Quality?

External
Correctness Does it do what it supposed to do?
Reliability Does it do it accurately all the time?
Efficiency Does it do without excessive resources?
Integrity Is it secure?

Internal
Portability Can I use it under different conditions?
Maintainability Can I fix it?
Flexibility Can I change it or extend it or reuse it?

Quality Assurance
–  Process of uncovering problems and improving software quality
–  Testing is a major part of QA

9 CSE331 Spring 2014

Software Quality Assurance (QA)

Testing plus other activities including:
–  Static analysis (assessing code without executing it)
–  Correctness proofs (theorems about program properties)
–  Code reviews (people reading each others’ code)
–  Software process (methodology for code development)
–  …and many other ways to find problems and increase

confidence

No single activity or approach can guarantee software quality
 “Beware of bugs in the above code;
 I have only proved it correct, not tried it.”
 -Donald Knuth, 1977

10 CSE331 Spring 2014

What can you learn from testing?

“Program testing can be used to show
the presence of bugs, but never to
show their absence!”

Edsgar Dijkstra
Notes on Structured Programming,

1970

Nevertheless testing is essential. Why?

11 CSE331 Spring 2014

What Is Testing For?

Validation = reasoning + testing
–  Make sure module does what it is specified to do
–  Uncover problems, increase confidence

Two rules:

1. Do it early and often
–  Catch bugs quickly, before they have a chance to hide
–  Automate the process wherever feasible

2. Be systematic
–  If you thrash about randomly, the bugs will hide in the corner

until you're gone
–  Understand what has been tested for and what has not
–  Have a strategy!

12 CSE331 Spring 2014

Kinds of testing

•  Testing is so important the field has terminology for different
kinds of tests
–  Won’t discuss all the kinds and terms

•  Here are three orthogonal dimensions [so 8 varieties total]:

–  Unit testing versus system/integration testing
•  One module’s functionality versus pieces fitting together

–  Black-box testing versus clear-box testing
•  Does implementation influence test creation?
•  “Do you look at the code when choosing test data?”

–  Specification testing versus implementation testing
•  Test only behavior guaranteed by specification or other

behavior expected for the implementation?
CSE331 Spring 2014 13

Unit Testing

•  A unit test focuses on one method, class, interface, or module

•  Test a single unit in isolation from all others

•  Typically done earlier in software life-cycle
–  Integrate (and test the integration) after successful unit

testing

14 CSE331 Spring 2014

How is testing done?

Write the test
1) Choose input data/configuration
2) Define the expected outcome

Run the test
3) Run with input and record the outcome
4) Compare observed outcome to expected outcome

15 CSE331 Spring 2014

sqrt example

// throws: IllegalArgumentException if x<0
// returns: approximation to square root of x
public double sqrt(double x){…}

What are some values or ranges of x that might be worth probing?

x < 0 (exception thrown)
x ≥ 0 (returns normally)
around x = 0 (boundary condition)
perfect squares (sqrt(x) an integer), non-perfect squares
x<sqrt(x) and x>sqrt(x) – that's x<1 and x>1 (and x=1)
Specific tests: say x = -1, 0, 0.5, 1, 4

16 CSE331 Spring 2014

What’s So Hard About Testing?

“Just try it and see if it works...”

 // requires: 1 ≤ x,y,z ≤ 10000
 // returns: computes some f(x,y,z)
 int proc1(int x, int y, int z){…}

Exhaustive testing would require 1 trillion runs!

–  Sounds totally impractical – and this is a trivially small problem

Key problem: choosing test suite

–  Small enough to finish in a useful amount of time
–  Large enough to provide a useful amount of validation

17 CSE331 Spring 2014

Approach: Partition the Input Space

Ideal test suite:
Identify sets with same behavior
Try one input from each set

Two problems:

1. Notion of same behavior is subtle
•  Naive approach: execution equivalence
•  Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge

•  If we had it, we wouldn’t need to test
•  Use heuristics to approximate cheaply

18 CSE331 Spring 2014

Naive Approach: Execution Equivalence

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {
 if (x < 0) return -x;
 else return x;
}

All x < 0 are execution equivalent:

–  Program takes same sequence of steps for any x < 0

All x ≥ 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite

19 CSE331 Spring 2014

Execution Equivalence Can Be Wrong

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {
 if (x < -2) return -x;
 else return x;
}

{-3, 3} does not reveal the error!

Two possible executions: x < -2 and x >= 2

Three possible behaviors:

–  x < -2 OK, x = -2 or x= -1 (BAD)
–  x >= 0 OK

 20 CSE331 Spring 2014

Heuristic: Revealing Subdomains

•  A subdomain is a subset of possible inputs

•  A subdomain is revealing for error E if either:
–  Every input in that subdomain triggers error E, or
–  No input in that subdomain triggers error E

•  Need test only one input from a given subdomain
–  If subdomains cover the entire input space, we are

guaranteed to detect the error if it is present

•  The trick is to guess these revealing subdomains

21 CSE331 Spring 2014

Example

For buggy abs, what are revealing subdomains?
–  Value tested on is a good (clear-box) hint

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {
 if (x < -2) return -x;
 else return x;
}

Example sets of subdomains:

Which is best?

… {-2} {-1} {0} {1} …
{…, -4, -3} {-2, -1} {0, 1, …}
… {-6, -5, -4} {-3, -2, -1} {0, 1, 2} …

CSE331 Spring 2014 22

Heuristics for Designing Test Suites

A good heuristic gives:
–  Few subdomains
–  ∀ errors in some class of errors E,
 High probability that some subdomain is revealing for E

 and triggers E

Different heuristics target different classes of errors
–  In practice, combine multiple heuristics
–  Really a way to think about and communicate your test

choices

23 CSE331 Spring 2014

Black-Box Testing

Heuristic: Explore alternate cases in the specification
Procedure is a black box: interface visible, internals hidden

Example

 // returns: a > b => returns a
 // a < b => returns b
 // a = b => returns a
 int max(int a, int b) {…}

3 cases lead to 3 tests

 (4, 3) => 4 (i.e. any input in the subdomain a > b)
 (3, 4) => 4 (i.e. any input in the subdomain a < b)
 (3, 3) => 3 (i.e. any input in the subdomain a = b)

24 CSE331 Spring 2014

Black Box Testing: Advantages

Process is not influenced by component being tested

–  Assumptions embodied in code not propagated to test data
–  (Avoids “group-think” of making the same mistake)

Robust with respect to changes in implementation

–  Test data need not be changed when code is changed

Allows for independent testers

–  Testers need not be familiar with code
–  Tests can be developed before the code

25 CSE331 Spring 2014

More Complex Example

Write tests based on cases in the specification
// returns: the smallest i such
// that a[i] == value
// throws: Missing if value is not in a
int find(int[] a, int value) throws Missing

Two obvious tests:
 ([4, 5, 6], 5) => 1
 ([4, 5, 6], 7) => throw Missing

Have we captured all the cases?

Must hunt for multiple cases

–  Including scrutiny of effects and modifies

26

([4, 5, 5], 5) => 1	

CSE331 Spring 2014

Heuristic: Boundary Testing

Create tests at the edges of subdomains

Why?

–  Off-by-one bugs
–  “Empty” cases (0 elements,
 null, …)
–  Overflow errors in arithmetic
–  Object aliasing

Small subdomains at the edges of the “main” subdomains have a high
probability of revealing many common errors

–  Also, you might have misdrawn the boundaries

27 CSE331 Spring 2014

Boundary Testing

To define the boundary, need a notion of adjacent inputs

One approach:

–  Identify basic operations on input points
–  Two points are adjacent if one basic operation apart

Point is on a boundary if either:

–  There exists an adjacent point in a different subdomain
–  Some basic operation cannot be applied to the point

Example: list of integers

–  Basic operations: create, append, remove
–  Adjacent points: <[2,3],[2,3,3]>, <[2,3],[2]>
–  Boundary point: [] (can’t apply remove)

28 CSE331 Spring 2014

Other Boundary Cases

Arithmetic
–  Smallest/largest values
–  Zero

Objects
–  null
–  Circular list
–  Same object passed as multiple arguments (aliasing)

29 CSE331 Spring 2014

Boundary Cases: Arithmetic Overflow

// returns: |x|
public int abs(int x) {…}

What are some values or ranges of x that might be worth probing?

–  x < 0 (flips sign) or x ≥ 0 (returns unchanged)
–  Around x = 0 (boundary condition)
–  Specific tests: say x = -1, 0, 1

How about…
 int x = Integer.MIN_VALUE; // x=-2147483648
 System.out.println(x<0); // true
 System.out.println(Math.abs(x)<0); // also true!

From Javadoc for Math.abs:

Note that if the argument is equal to the value of
Integer.MIN_VALUE, the most negative representable int
value, the result is that same value, which is negative

30 CSE331 Spring 2014

Boundary Cases: Duplicates & Aliases

// modifies: src, dest
// effects: removes all elements of src and
// appends them in reverse order to
// the end of dest
<E> void appendList(List<E> src, List<E> dest) {
 while (src.size()>0) {
 E elt = src.remove(src.size()-1);
 dest.add(elt);
 }
}

What happens if src and dest refer to the same object?

–  This is aliasing
–  It’s easy to forget!
–  Watch out for shared references in inputs!

31 CSE331 Spring 2014

Heuristic: Clear (glass, white)-box testing

Focus: features not described by specification
–  Control-flow details
–  Performance optimizations
–  Alternate algorithms for different cases

Common goal:

–  Ensure test suite covers (executes) all of the program
–  Measure quality of test suite with % coverage

Assumption implicit in goal:
–  If high coverage, then most mistakes discovered

32 CSE331 Spring 2014

Glass-box Motivation

There are some subdomains that black-box testing won't catch:

 boolean[] primeTable = new boolean[CACHE_SIZE];

 boolean isPrime(int x) {
 if (x>CACHE_SIZE) {
 for (int i=2; i<x/2; i++) {
 if (x%i==0)
 return false;
 }
 return true;
 } else {
 return primeTable[x];
 }
 }

33 CSE331 Spring 2014

Glass Box Testing: [Dis]Advantages

•  Finds an important class of boundaries
–  Yields useful test cases

•  Consider CACHE_SIZE in isPrime example
–  Important tests CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1
–  If CACHE_SIZE is mutable, may need to test with different
CACHE_SIZEs

Disadvantage:

–  Tests may have same bugs as implementation
–  Buggy code tricks you into complacency once you look at it

34 CSE331 Spring 2014

Code coverage: what is enough?

int min(int a, int b) {
 int r = a;
 if (a <= b) {
 r = a;
 }
 return r;
}

•  Consider any test with a ≤ b (e.g., min(1,2))

–  Executes every instruction
–  Misses the bug

•  Statement coverage is not enough

35 CSE331 Spring 2014

Code coverage: what is enough?

int quadrant(int x, int y) {
 int ans;
 if(x >= 0)
 ans=1;
 else
 ans=2;
 if(y < 0)
 ans=4;
 return ans;
}

•  Consider two-test suite: (2,-2) and (-2,2). Misses the bug.
•  Branch coverage (all tests “go both ways”) is not enough

–  Here, path coverage is enough (there are 4 paths)

36 CSE331 Spring 2014

2  1

3  4

Code coverage: what is enough?

int num_pos(int[] a) {
 int ans = 0;
 for(int x : a) {
 if (x > 0)
 ans = 1; // should be ans += 1;
 }
 return ans;
}

•  Consider two-test suite: {0,0} and {1}. Misses the bug.
•  Or consider one-test suite: {0,1,0}. Misses the bug.

•  Branch coverage is not enough
–  Here, path coverage is enough, but no bound on path-count

37 CSE331 Spring 2014

Code coverage: what is enough?

int sum_three(int a, int b, int c) {
 return a+b;
}

•  Path coverage is not enough
–  Consider test suites where c is always 0

•  Typically a “moot point” since path coverage is unattainable for
realistic programs
–  But do not assume a tested path is correct
–  Even though it is more likely correct than an untested path

•  Another example: buggy abs method from earlier in lecture

 38 CSE331 Spring 2014

Varieties of coverage

Various coverage metrics (there are more):
Statement coverage
Branch coverage
Loop coverage
Condition/Decision coverage
Path coverage

Limitations of coverage:
1.  100% coverage is not always a reasonable target

100% may be unattainable (dead code)
High cost to approach the limit

2.  Coverage is just a heuristic
We really want the revealing subdomains

39

increasing
number of
test cases
required
(generally)

CSE331 Spring 2014

Pragmatics: Regression Testing

•  Whenever you find a bug
–  Store the input that elicited that bug, plus the correct output
–  Add these to the test suite
–  Verify that the test suite fails
–  Fix the bug
–  Verify the fix

•  Ensures that your fix solves the problem
–  Don’t add a test that succeeded to begin with!

•  Helps to populate test suite with good tests
•  Protects against reversions that reintroduce bug

–  It happened at least once, and it might happen again

40 CSE331 Spring 2014

Rules of Testing

First rule of testing: Do it early and do it often
–  Best to catch bugs soon, before they have a chance to hide
–  Automate the process if you can
–  Regression testing will save time

Second rule of testing: Be systematic

–  If you randomly thrash, bugs will hide in the corner until later
–  Writing tests is a good way to understand the spec
–  Think about revealing domains and boundary cases

•  If the spec is confusing, write more tests
–  Spec can be buggy too

•  Incorrect, incomplete, ambiguous, missing corner cases
–  When you find a bug, write a test for it first and then fix it

41 CSE331 Spring 2014

Closing thoughts on testing

Testing matters
–  You need to convince others that the module works

Catch problems earlier
–  Bugs become obscure beyond the unit they occur in

Don't confuse volume with quality of test data
–  Can lose relevant cases in mass of irrelevant ones
–  Look for revealing subdomains

Choose test data to cover:
–  Specification (black box testing)
–  Code (glass box testing)

Testing can't generally prove absence of bugs
–  But it can increase quality and confidence

42 CSE331 Spring 2014

