HW?7, Dijkstra’s

CSE 331 — Section 7

02/21/2013

Slides by Kellen Donohue,
Modified by David Mailhot,
with much material from Dan Grossman



Homework 7

Modify your graph to use Generics

o Change your hw5 code where it is now
o Will have to update hw5, hwb6 tests

Implement Dijkstra’s algorithm
o Alternate search algorithm that uses edge weights
o Apply to Marvel graph, with edge weights
reciprocal to number of books in common



Note on folders

MarvelPaths2.java looks in src/hw7/data
HW7TestDriver.java looks in src/hw7/test



Shortest paths

Done: BFS to find the minimum path length
fromvtou

Now: Weighted graphs
Given a weighted graph and node v,

find the minimum-cost path from v to every
node

Unlike before, BFS will not work



Not as easy

100 _ 100 1
100 100 1

-10

500

Why BFS won’t work:
Smallest-cost path may not have the fewest edges

We will assume there are no negative weights

o Problemisill-defined if there are negative-cost cycles
o Today’s algorithm is wrong if edges can be negative



Dijkstra’s Algorithm

Named after its inventor Edsger Dijkstra (1930-2002)

o Truly one of the “founders” of computer science;
this is just one of his many contributions

The idea: reminiscent of BFS, but adapted to handle
weights
e Grow the set of nodes whose shortest distance has been

computed
e Nodes not in the set will have a “best distance so far”

e A priority queue will turn out to be useful for efficiency



Dljkstra S Algorlthm ldea

4

Initially, start node has cost 0 and all other nodes have cost «

At each step:

o Pick closest unknown vertex v
o Add it to the “cloud” of known vertices
« Update distances for nodes with edges from v

That’s it!



Aside: weights for Marvel Data

The Marvel data doesn't really have a measure of
'weight' we can use:

e So for HW7 you'll be hacking your own!



Aside: weights for Marvel Data

The idea: the more well-connected two characters are, the lower

the weight and the more likely that a path is taken through
them.

« The weight of the edge between two characters is equal to
the inverse of how many comic books those two characters
are in together (the 'multiplicative inverse').

« Forexample, if Amazing Amoeba and Zany Zebra appeared in
5 comic books together, the weight of the edge between
them would be 1/5.

« No duplicate edges: two characters will have at most one
edge between them that is labeled with a cost.



Aside: weights for Marvel Data

You'll be placing your new Marvel application in
hw7/MarvelPaths2.java.

Key: You will calculate edge costs when you read in the data

and construct your graph using those calculated weights, all in
MarvelPaths2.java



Dljkstra S Algorlthm ldea

4

Initially, start node has cost 0 and all other nodes have cost «

At each step:

o Pick closest unknown vertex v
o Add it to the “cloud” of known vertices
« Update distances for nodes with edges from v

That’s it!



The Algorithm

For each node v, set v.cost = ~ and v.known

false

Set source.cost = 0

While there are unknown nodes in the graph
a. Select the unknown node v with lowest cost

b. Mark v as known
c. Foreachedge (v,u) with weight w,
cl = v.cost + w//costof best path through v to u

c2 = u.cost //costof best path to u previously known
if (el < c2) { //if the path through v is better

u.cost = cl
u.path = v //for computing actual paths



Important features

When a vertex is marked known, the cost of the shortest path to that
node is known

e The path is also known by following back-pointers

While a vertex is still not known, another shorter path to it might still
be found

e: The “Order Added to Known Set” is not important

e A detail about how the algorithm works (client doesn’t care)
e Not used by the algorithm (implementation doesn’t care)
e Itis sorted by path-cost, resolving ties in some way



Order Added to Known Set:

Example

known?

cost

path

??

??

??

??

??

??

??




Order Added to Known Set:

Example

A

known? cost path
A Y 0
B <2 A
C <1 A
D <4 A
E ??
F ??
G ??
H ??




Order Added to Known Set:

Example

A, C

known? cost path
A Y 0
B <2 A
C Y 1 A
D <4 A
E <12 C
F ??
G ??
H ??




Order Added to Known Set:

Example

A CB

known? cost path
A Y 0
B Y 2 A
C Y 1 A
D <4 A
E <12 C
F <4 B
G ??
H ??




Order Added to Known Set:

Example

A CB,D

known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F <4 B
G ??
H ??




Order Added to Known Set:

Example

A ,CB,D,F

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G ??

H <7 F




Order Added to Known Set:

Example

A CB,D,FH

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G <8 H
H Y 7 F




Order Added to Known Set:

Example

A CB,D,FHG

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <11 G
F Y 4 B
G Y 8 H
H Y 7 F




Order Added to Known Set:

Example

A CB,DFHGE

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y H
H Y F




Features

When a vertex is marked known,

the cost of the shortest path to that node is known
e The path is also known by following back-pointers

While a vertex is still not known,

another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important
o A detail about how the algorithm works (client doesn’t
care)

e Not used by the algorithm (implementation doesn’t care)
o Itis sorted by path-cost, resolving ties in some way



Interpreting the Results

Now that we’re done, how do we get the path
from, say, Ato E?

vertex | known? cost path

Nl

Order Added to Known Set:

A CB,DFHGE

T IO|lmMm|mlolo|w
< I XX XXX
M| T | WO |>>|>




Order Added to Known Set:

Example

vertex | known? cost path

A 0

B ??
C ??
D ??
E ??
F ??
G ??




Order Added to Known Set:

Example

A, D,CEMB,FG

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D




Efficiency, first approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

dijkstra (Graph G, Node start) ({ 0]
for each node: x.cost=infinity, x.known=false (1V])

start.cost = 0
while (not all nodes are known) { o(|V|?)
b = dequeue
b.known = true
for each edge (b,a) in G
if(!'a.known)

if (b.cost + weight((b,a)) < a.cost) { O(|E])
a.cost = b.cost + weight ((b,a))
a.path = b

} O(|V]?)



Priority Queue

« Increase efficiency by considering lowest cost
unknown vertex with sorting instead of

looking at all vertices
« PriorityQueue is like a queue, but returns
elements by lowest value instead of insertion

time



Priority Queue

Two different ways to define 'lowest value' for
a priority queue:
. Inserted elements must implement the

java Comparable interface.

a. class Node implements Comparable<Node>
b. public int compareTo(other)

.. Define a Comparator object and hand it to
your priority gueue on construction.

a. class NodeComparator extends Comparator<Node>
b. new PriorityQueue(new NodeComparator())



Efficiency, second approach

Use pseudo code to determine asymptotic run-time

dijkstra (Graph G, Node start) {

for each node: x.cost=infinity,
start.cost = 0
build-heap with all nodes
while (heap i1s not empty) {

b = deleteMin|()

1f (b.known) continue;

b.known = true

for each edge (b,a) in G

if (!'a.known) {

X .known=false 0]

(1V1)

O(|V|log|V])

O(|E[log|V])

add (b.cost + weight((b,a)) )

O(|E[log|V])



Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path

o True initially: shortest path to start node has cost 0
o If it stays true every time we mark a node “known”, then by
induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’
t discover a shorter path later!

o This holds only because Dijkstra’s algorithm picks the node with
the next shortest path-so-far

« The proof is by contradiction...



Correctness: The Cloud (Rough Sketch)

Next shortest path from
inside the known cloud

Better path to
v? No!

QOThe Known
Cloud

Source

Suppose v is the next node to be marked known (“added to the cloud”)

e The best-known path to v must have only nodes “in the cloud”
o Else we would have picked a node closer to the cloud than v
e Suppose the actual shortest path to v is different
o It won’t use only cloud nodes, or we would know about it
e So it must use non-cloud nodes. Let w be the first non-cloud node on
this path. The part of the path up to w is already known and must be
shorter than the best-known path to v. So v would not have been
picked. Contradiction.

Spring 2012 CSE332: Data Abstractions



Use in HW

o Will use in HW7 to find paths between
characters, weighted so characters that
commonly appear together have short paths
between them

o Will use in HW8/9 to map distances across
campus



