
hw6, BFS, debugging

CSE 331

Section 5 – 10/25/12

Slides by Kellen Donohue

Agenda

● hw5 to graded in time for feedback to be used
on hw6

● hw6 due next week

● Today
● Asserts
● hw6 data
● BFS
● Debugging

hashcode() and equals()
Overriding these important for using classes you
write in collections, e.g.

Read Javadoc for requirements
● Transitive, symmetric, etc. we’ll discuss later in lecture
● Usually must override hashcode() if you override

equals()

Eclipse can generate them for you
● Right click in class source file
● Source -> Generate hashCode() and equals()
● Not always perfect – learn more later & in 332

Asserts

assert true; // nothing happens

assert false; // program terminates with an

 // assertion failure

Asserts

You must manually turn on assert statements for
them to be run in your code.

The command line flag is "-ea"

To set command line flags in eclipse:

The .java file you are running -> Run As -> Run Configurations

Arguments tab

Enter "-ea" under 'Program arguments'

Asserts

Homework 6

Use Graph ADT from hw5

Fill with Marvel Data
Nodes = characters

Edges = books
Labeled with title

Connecting characters if both
characters appeared in that book

Turns out to model real life
social graphs

Homework 6

The Data

Download from HW6 assignment page

Graph paths

● List of nodes travelled
to get from one node to
another, moving along
edges, respecting
direction

A B

C D

E

Graph paths

● List of nodes travelled
to get from one node to
another, moving along
edges, respecting
direction

A B

C D

E

Graph paths

● List of nodes travelled
to get from one node to
another, moving along
edges, respecting
direction

A B

C D

E

Graph paths

● List of nodes travelled
to get from one node to
another, moving along
edges, respecting
direction

A B

C D

E

Graph paths

● List of nodes travelled
to get from one node to
another, moving along
edges, respecting
direction

● ADEC is a path A to C

A B

C D

E

Graph paths

● List of nodes travelled
to get from one node to
another, moving along
edges, respecting
direction

● ADEC is a path A to C
● AC is a path A to C

A B

C D

E

Graph paths

● List of nodes travelled
to get from one node to
another, moving along
edges, respecting
direction

● ADEC is a path A to C
● AC is a path A to C
● There’s no path A to B

A B

C D

E

Graph paths

● We often want to find
the shortest path
between two nodes
● Google Maps
● Optimal route through a

maze

● AC is the shortest path
A to C

A B

C D

E

Breadth-first search

Pseudo code
Put start node in a queue

While the queue isn’t empty
Pick a node N off the queue

If N is the goal then return

Else, for each node O you can reach from N
If O isn’t marked

Add O to the queue

Mark O

// Couldn’t find a path from start node to goal node

Return false

Breadth-first search

We often want to find the shortest path
between two nodes

● Google Maps
● Optimal route through a maze

Breadth-first search

Queue
< <

A

B

C D

E

Breadth-first search

Queue
< A <

A

B

C D

E

Breadth-first search

Queue
< C D <

A

B

C D

E

Breadth-first search

Queue
< D E <

Reach C by path

A -> C

A

B

C D

E

Breadth-first search

Queue
< E <

Reach D by path

A -> D

A

B

C D

E

Breadth-first search

Queue
< <

Reach E by path

A -> C -> E

A

B

C D

E

Breadth-first search

Queue empty: DONE
< <

No path from A to B

A

B

C D

E

Breadth-first search

Guaranteed to find shortest-path
● In number of nodes
● Not lowest cost path if edges have cost

Breadth First Search uses a Queue. Change to a Stack to
change it to a Depth First Search

Very memory intensive for large graphs -- O(b^d)

Will use in HW6 to find shortest paths between two
characters

Eclipse Debugging

Eclipse has a great debugger!
● Complicated, hidden features
● I’ll demo, but don’t feel try to remember how to

do everything – slides will be posted

Eclipse Debugging

Eclipse Debugging

Double click in the gray area to the left of your code to set a
breakpoint. A breakpoint is a line that the Java VM will stop at
during normal execution of your program, and wait for action from
you.

Eclipse Debugging

Click the Bug icon to run in Debug
mode. Otherwise your program
won’t stop at your breakpoints.

Eclipse Debugging

Controlling your program
while debugging is done with
these buttons

Eclipse Debugging

Play, pause, stop work just
like you’d expect

Eclipse Debugging

Step Into

Steps into the method at the
current execution point – if
possible. If not possible then
just proceeds to the next
execution point.

If there’s multiple methods
at the current execution
point step into the first one
to be executed.

Eclipse Debugging

Step Over

Steps over any method calls at
the current execution point.

Theoretically program proceeds
just to the next line.

BUT, if you have any
breakpoints set that would be
hit in the method(s) you
stepped over, execution will
stop at those points instead.

Eclipse Debugging

Step Out

Allows method to finish and
brings you up to the point
where that method was called.

Useful if you accidentally step
into Java internals (more on
how to avoid this next).

Just like with step over though
you may hit a breakpoint in the
remainder of the method, and
then you’ll stop at that point.

Eclipse Debugging
Enable/disable step filters

There’s a lot of code you don’t
want to enter when debugging,
internals of Java, internals of
JUnit, etc.

You can skip these by
configuring step filters.

Checked items are skipped.

Eclipse Debugging

Stack Trace

Shows what methods have
been called to get you to
current point where program
is stopped.

You can click on different
method names to navigate
to that spot in the code
without losing your current
spot.

Eclipse Debugging

Variables Window

Shows all variables, including
method parameters, local
variables, and class variables,
that are in scope at the current
execution spot. Updates when
you change positions in the
stackframe. You can expand
objects to see child member
values. There’s a simple value
printed, but clicking on an item
will fill the box below the list
with a pretty format.

Some values are in the form of
ObjectName (id=x), this can be
used to tell if two variables are
reffering to the same object.

Eclipse Debugging

Variables that have changed
since the last break point are
highlighted in yellow.

You can change variables right
from this window by double
clicking the row entry in the
Value tab.

Eclipse Debugging

Variables that have changed
since the last break point are
highlighted in yellow.

You can change variables right
from this window by double
clicking the row entry in the
Value tab.

Eclipse Debugging

There’s a powerful right-click
menu.

● See all references to a given
variable

● See all instances of the
variable’s class

● Add watch statements for
that variables value (more
later)

Eclipse Debugging

Show Logical Structure

Expands out list items so it’s as
if each list item were a field (and
continues down for any children
list items)

Eclipse Debugging

Breakpoints Window

Shows all existing breakpoints in
the code, along with their
conditions and a variety of
options.

Double clicking a breakpoint will
take you to its spot in the code.

Eclipse Debugging

Enabled/Disabled Breakpoints

Breakpoints can be temporarily
disabled by clicking the
checkbox next to the
breakpoint. This means it won’t
stop program execution until re-
enabled.

This is useful if you want to hold
off testing one thing, but don’t
want to completely forget about
that breakpoint.

Eclipse Debugging

Hit count

Breakpoints can be set to occur
less-frequently by supplying a
hit count of n.

When this is specified, only each
n-th time that breakpoint is hit
will code execution stop.

Eclipse Debugging

Conditional Breakpoints

Breakpoints can have
conditions. This means the
breakpoint will only be triggered
when a condition you supply is
true. This is very useful for
when your code only breaks on
some inputs!

Watch out though, it can make
your code debug very slowly,
especially if there’s an error in
your breakpoint.

Eclipse Debugging

Disable All Breakpoints

You can disable all breakpoints
temporarily. This is useful if you’
ve identified a bug in the middle
of a run but want to let the rest
of the run finish normally.

Don’t forget to re-enable
breakpoints when you want to
use them again.

Eclipse Debugging

Break on Java Exception

Eclipse can break whenever a
specific exception is thrown.
This can be useful to trace an
exception that is being
“translated” by library code.

Eclipse Debugging

Expressions Window

Used to show the results of custom
expressions you provide, and can
change any time.

Not shown by default but highly
recommended.

Eclipse Debugging

Expressions Window

Used to show the results of custom
expressions you provide, and can
change any time.

Resolves variables, allows method
calls, even arbitrary statements
“2+2”

Beware method calls that mutate
program state – e.g. stk1.clear() or
in.nextLine() – these take effect
immediately

Eclipse Debugging

Expressions Window

These persist across projects, so
clear out old ones as necessary.

Eclipse Debugging

● Demo

